
Optimizing Real-Time Video Experience with Data Scalable
Codec

Hanchen Li∗
University of Chicago

Yihua Cheng∗
University of Chicago

Ziyi Zhang
University of Chicago

Qizheng Zhang
Stanford University

Anton Arapin
University of Chicago

Nick Feamster
University of Chicago

Amrita Mazumdar
NVIDIA

ABSTRACT
Real-time video communication is becoming more and more im-
portant. However, packet loss is prevalent and resending packets,
especially in long-latency networks, causes visual stalls. Previous
solutions all perform suboptimally as they either add redundancy
before sending the data, which reduces bitrate when no packet is
lost, or fail to prevent video freeze when redundancy is not enough.
User studies confirm that both bitrate decrease and video freeze
significantly damage users’ Quality of Experience (QoE). Through
a user study comparing different artifacts during a quality drop
period, we find that moderate quality drop is preferred over video
freeze during packet loss. Inspired by this, we propose a new solu-
tion that trains a neural network Autoencoder to optimize frame
quality under different packet loss rates. Our insight is that such
training produces a Data Scalable codec, whose quality increases
with each new packet arrival and reaches highest quality when
no packet is lost. Specifically, with the arrival of any 𝑥 encoded
bytes of a frame, the decoded quality is closer to the quality than
if the whole frame were encoded with 𝑥 bytes in the first place.
Thus, unless all packets are lost, our approach causes a moderate
quality drop instead of video freeze during packet loss. In the end,
we identify the technical challenges remaining in this approach
and point out future opportunities.

CCS CONCEPTS
• Information systems → Multimedia information systems; •
Networks→Application layer protocols; •Computingmethod-
ologies → Computer vision; • Human-centered computing;

KEYWORDS
Real-Time Communication, Video Conferencing, Autoencoder, QoE

ACM Reference Format:
Hanchen Li∗, Yihua Cheng∗, Ziyi Zhang, Qizheng Zhang, Anton Arapin,
Nick Feamster, and Amrita Mazumdar. 2023. Optimizing Real-Time Video
Experience with Data Scalable Codec. In Emerging Multimedia Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EMS ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0303-4/23/09. . . $15.00
https://doi.org/10.1145/3609395.3611108

(EMS ’23), September 10, 2023, New York, NY, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3609395.3611108

1 INTRODUCTION
Real-time video communication has become increasingly impor-
tant [18]. With applications in online conferencing [5], cloud gam-
ing [4] and virtual reality [8], real-time video is growing more
rapidly than other video formats.

However, since there is little buffering for streaming real-time
videos [15], they are more vulnerable to unstable network condi-
tions. With Adaptive Bitrate Algorithms (ABR), the sender tries to
align sending rate with bandwidth, but sudden network degrada-
tion such as a bandwidth drop could still cause packet loss [18].
Since the receiver does not keep a buffer in advance, it may need
to wait for packet retransmission and this damages video quality.

There has been a wide range of effort spent to solve this problem:
Forward Error Correction (FEC) adds redundancy to the packets
such that the transmitted data could recover from packet loss. Error
Concealment methods decode partial frames and try to recover
the original frames. Scalable Video Coding (SVC) encodes videos
at multiple quality layers, enabling incremental improvement of
quality as data is transmitted layer by layer.

However, none of these methods achieve satisfactory perfor-
mance for both packet loss and non-loss situations. FEC sets a fixed
redundancy rate. But if the predicted loss rate is lower than the
actual loss rate, the data cannot be reconstructed. On the other
hand, a higher predicted loss rate leads to streaming video at a
lower bitrate, compromising the video quality. Error concealment
techniques give lower quality when streaming without loss and
suffer from substantial degradation in the presence of packet loss.
SVC assumes packets are transmitted in layer order. If a packet in
lower layer is lost, higher layers will not be able to decode. This
gives lower quality and could still need retransmission.

Prior work has shown that bitrate drop and frame freeze both
damage Quality of Experience (QoE). [14, 17] In order to specif-
ically quantify the tradeoff between them to find out properties
that an ideal real-time video codec should satisfy, we conducted
a supplementary user study in §2. It is observed that users prefer
moderate graphical quality drops over frame freezes during packet
loss, but this preference disappears when graphical quality drops
becomes more severe.

Inspired by the observation, we propose the solution of Data
Scalable codec to perform under both packet-loss and non-loss

∗equal contribution

https://doi.org/10.1145/3609395.3611108
https://doi.org/10.1145/3609395.3611108

situations. By training neural-network based video autoencoders
that optimize performance under different packet loss rates (§3),
we create the first Data Scalable codec that exhibits a progressive
improvement in quality with any more data arrival. Specifically,
when 100% of the packets arrive, the codec delivers video quality
comparable to traditional codecs such as H.265 in the same bitrate.
With any of 60% data arrival, it maintains a quality similar to H.265
encoding with 60% bitrate beforehand. While it gives high quality
when there is no packet loss, this Data Scalable codec reduces the
need for retransmission and substitutes it with moderate quality
drop under packet loss. No previous methods have achieved this
property: FEC doesn’t increase quality when more data arrives after
being able to reconstruct and can not decode if not enough arrives.
SVC forces packets to arrive in an enforced order. Error concealment
solely modifies the decoder and do not produce comparable quality
since much information has already been lost.

With Data Scalability, our codec has the potential to bring great
improvement to real-time communication. Through end to end
simulation, we show that, compared with existing systems, our
solution reduces the ratio of delayed frames (defined as the frames
whose delay between encoding and decoding is greater than 400 ms)
by up-to 19× and the stall rate (defined as the fraction of video
freezes that exceed 200 ms) by 14× with comparable visual quality.

To summarize, our contributions in this paper are the following:

• We point out that an ideal codec that performs under both
packet loss and no loss conditions should be Data Scalable to
deliver quality proportional to the amount of received data.

• We built the first Data Scalable codec by modifying neural
network based autoencoder that has significant potential
improvement over existing systems.

• We identify challenges and future opportunities brought by
this idea to spark more effort in the direction

2 MOTIVATION
2.1 Real-Time Video Communication
Real-time video communication can be peer-to-peer or with media
servers [3, 18]. Although the technique applies to more general
situations, this paper mainly focuses on the transmission of peer-
to-peer video. In such cases, the video sender runs a rate adaptation
logic to dynamically set the frame rate and bitrate of the encoded
video stream. The video stream consists of multiple groups of con-
secutive frames (GoP), each starting with an I-frame (intra-frame)
followed by P-frames (predicted frames). I-frames are encoded in-
dependently (i.e., they can be decoded without other frames), so
their sizes are much bigger than P-frames, which only encode the
differences with other reference frames. The key difference from
traditional video on demand (VoD) streaming is that there is little
buffer at the receiver since the content needs to be delivered as
soon as possible [10, 15]. This makes real-time video especially
vulnerable to packet loss in dynamic networking conditions.

2.2 Previous Methods
Many efforts have been done to mitigate packet loss for video
streaming. We discuss common previous approaches here.

Forward Error Correction coding (e.g., FEC): In real-time video
communication, the most commonly used technique for dealing
with packet losses is forward error correction (FEC) [10, 30]. FEC
encodes an n-byte frame to (n+k) bytes such that when any n of
the (n+k) bytes arrive at the receiver side, it is able to reconstruct
the original data. The problem with FEC-based methods is that
it requires prior knowledge of the packet loss rate. Without this
knowledge, the effective bitrate is reduced or retransmission may
still be necessary. If the amount of redundancy is underestimated,
the original frame still cannot be reconstructed. This results in
retransmitting the lost packets, which causes video freeze. Con-
versely, if sender overestimates the loss rate to be higher than the
necessary redundancy rate, it degrades the video quality.
Error Concealment: There has been work trying to reconstruct
the original frame based on partially decoded frames. H264 has in-
built error concealment methods [22]. Recent studies have explored
the use of neural networks (NN) to recover motion vectors (MVs)
or residuals [19]. However, these error concealment techniques
adds redundancy to data since different areas (macroblocks) of a
frame need to be independently decodable. This causes quality drop
during non-loss scenarios. Moreover, as our evaluation results show
in §4, their performance under packet loss is also suboptimal since
the majority of processing is solely on decoder side.
Scalable Video Coding (e.g., SVC): SVC divides a video into multi-
ple quality layers and transmits them incrementally, allowing each
newly received packets or layers to enhance the quality gradually.
Notable advancements have been made in SVC-based techniques
for on-demand video streaming including fine-grained scalability
(FSG) and Swift [13, 23].

However, SVC enforces a layer order for the packets of a frame
such that the loss of a single packet in lower layer can impact all
higher quality layers and may cause retransmission. While it is
possible to reliably transmit each layer individually in on-demand
videos, real-time video clients typically send each frame as a burst
to minimize delay. Therefore, without knowledge of the sequence
of lost packet, SVC has undesirable performance under loss. It could
add redundancy with FEC, but the problem of FEC still remains.

2.3 Quality of Experience
Given these problems, we try to quantify their impact to real world
users and find a more ideal solution to improve experience.

There has been lots of research effort done in the area of Quality
of Experience to align experience with a objective metric: Streaming
QoE Index builds their QoE model as a linear addition of perceptual
graphical quality and stalling score [14]; Seufert et al. compared
different QoE models in crowdsourced video datasets to show that
different models produce different rankings and it is hard to tell
the correctness of model without a definite groundtruth score [32];
Plenty other models have included graphical quality/bitrate and
temporal factors including stalling and buffering time as key indi-
cators for QoE [11, 12, 15, 17, 29, 35].

Although there is enough evidence showing that systems should
deliver videos with higher graphical quality while minimizing video
freeze, there hasn’t been an explicit study on the tradeoff between
quality decrease and video stall in a quality-impairment event
caused by packet loss. The closest study was done by Salsify in
appendix [15]. However the bitrate decrease is applied to the whole

Figure 1: User Study shows that users prefer moderate quality loss
over video freeze during packet loss

video chunk instead of the specific section where the packets get
lost, and there is no real-world explanation for the graphical quality
and delay level chosen in the study.

In order to explicitly learn about users’ preference on the tradeoff
of delay and graphical quality drop during packet loss in context of a
streaming system, we conducted a user study using three 10-second
reference videos from three different sources: cloud gaming [4],
Vimeo [36], and codec analysis[2]. We encode the source videos in
2Mbps normally and simulate different quality impairment effects
in packet loss situations where there is sudden bandwidth drop to
500Kbps in 5th and 7th second. The impairment effects created are
the following: (1) ∼800ms video freeze (generated by simulator in
§4.2) (2) Modest graphical quality drops (by encoding with 500Kbps
during bandwidth drop) 3. Significant graphical quality drop (by
encoding with 200Kbps during bandwidth drop).

Through 135 user ratings collected with the crowdsourcing web-
site Amazon Mturk [6], we observe that users prefer modest quality
drop over video freeze with 25.3% higher average Mean Opinion
Score. This confirms that video freeze indeed needs to be prevented.
Users prefer to keep the video playing even with degraded content.
However, when visual quality drops by too much, this preference
over video freeze disappears. When the frame becomes too obfus-
cated and users fail to recognize the content, they would rather
wait for clear frames to come later. Moreover, notice that the moder-
ate quality drop video generated by 500Kbps biterate is equivalent
to streaming with an oracle bitrate controller that knows future
bandwidth condition. Thus the quality should be optimal under
such packet loss scenarios.

By explicitly comparing effects on QoE of these two potential
quality impairment events under packet loss and combining with
previous studies, we are the first to point out an ideal real-time
video codec that enables better experience under both packet-loss
and non-loss situations should have the following properties:
• It is able to encode and decode in highest quality when there is
no packet loss.

• When there is packet loss, it needs to prevent both significant
graphical quality damage and video freeze. On the other hand, a
modest quality drop is acceptable.

2.4 Data Scalable Codec
We condense the above properties into a formal definition of Data
Scalability:

When x% of the encoded N-byte frame arrives, the
decoded quality of this frame is almost as good as
encoding 𝑁𝑥

100 bytes and decoding with full data.
With Data Scalable Codecs, users will be able to receive full

quality frames when there is no packet loss. When there is packet
loss, Data-Scalable codecs approximate the quality of frame encoded
with real arrived frame size. For example, in the setting of the second
user study experiment, Data Scalable codec will give frame quality
close to the optimal quality that was encoded in 500Kbps during
bandwidth drop period, which is similar to sending with a oracle
bitrate controller. And this will give us the preferred moderate
quality drop during packet loss. Since its quality with full data
arrival is also close with normal codec, it overcomes the problem
of lowered quality in adding redundancy.

Interestingly, a Data Scalable codec does not need full prediction
of network condition such as future bandwidth or loss rate. Rather,
it tries to make best use of every packet arrival such that each new
arrival increases frame quality. This is particularly helpful for one-
on-one video communication facing dynamic network conditions.

3 NEURAL CODEC FOR DATA SCALABLILITY
We built the first Data Scalable codec for real time video communi-
cation by revamping existing neural network based autoencoder
structure that purely optimized for video compression [25]. We will
first introduce Autoencoder video codec and then explain our Data
Scalable customization.

3.1 Autoencoder Structure
Unlike traditional codecs that uses handcraft logic, Autoencoders
utilize learned neural networks (NNs) to work as encoders and
decoders. We denote the encoder by 𝑓𝜙 (with its NN weights as 𝜙)
and the decoder by 𝑔𝜃 (with its weights as 𝜃). The encoder encodes
a frame x to a coded tensor y = 𝑓𝜙 (x), and the decoder decodes the
coded tensor y to a reconstructed frame x̂ = 𝑔𝜃 (y).

Mathematically, a video compression autoencoder typically min-
imizes the following expected loss function during training:

Ex 𝐸𝑟𝑟 (𝑔𝜃 (y), x)︸ ︷︷ ︸
Pixel error

+ 𝛼 · 𝑆𝑖𝑧𝑒 (y)︸ ︷︷ ︸
Encoded size

, where y = 𝑓𝜙 (x) (1)

Here, 𝐸𝑟𝑟 (x̂, x) is the graphical pixel-level error of the decoded
frame x̂ compared with original frame, and 𝑆𝑖𝑧𝑒 (y) is the size of
y in bit-per-pixel (bpp). The parameter 𝛼 determines the average
size generated by a model: a higher 𝛼 leads to smaller frame size
(𝑆𝑖𝑧𝑒 (𝑥)). But it would also degrades the graphical quality of 𝑥
since the frame error term has less weight in the loss function. This
enables autoencoder codecs to satisfy different bitrate requirement.

This work focuses mainly on encoding P-frames, the most com-
mon frame type in real-time videos as mentioned in §2. Specifically,
we use the architectures of DVC [25], a popular video autoencoder.
It shares similar steps with traditional video codec that it has motion
estimation, motion compensation, residual encoding/decoding, and

𝐲~𝑷 𝐲 𝒇𝝓 𝐱

(b) New autoencoder training: Random masking on the
encoder output to simulate the effect of packet loss.

𝐲 = 𝒇𝝓(𝐱)

𝐱 𝐱) = 𝒈𝜽(𝐲)

(a) Standard autoencoder training: Lossless channel
between the NN encoder and the NN decoder.

𝒇𝝓 𝒈𝜽

Original Reconstructed

Random masking

Lossless

𝐱) = 𝒈𝜽(𝐲)

𝒈𝜽

Reconstructed
𝐱

𝒇𝝓

Original

𝐲: Decoder input

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 0 3
4 0 6
0 8 9

1 2 3
4 5 6
7 8 9

𝒇𝝓(𝐱): Encoder output

𝐲: Decoder input𝒇𝝓(𝐱): Encoder output

Figure 2: We mask random fractions of elements in the coded tensor
(encoder output) to zero in contrast to original autoencoder.

entropy coding. However, it replaced handcrafted heuristics in these
steps with neural networks. Since every function is differentiable,
every step could be trained jointly to minimize the loss function
in Eq. 1. This end-to-end training gives it close performance with
H265 under various bpps.

3.2 Data Scalable Customization
We now present our modifications to video compression autoen-
coders that enable Data Scalablity. Instead of minimizing previous
loss funcition in Eq 1, we jointly train the encoder and decoder NNs
to minimize:

Ex𝐸𝑟𝑟 (𝑔𝜃 (y), x) + 𝛼 ·𝑆𝑖𝑧𝑒 (y), where y ∼ 𝑃 (y|𝑓𝜙 (x))︸ ︷︷ ︸
Simulate packet loss

(2)

The essential part of the loss function in Eq. 2 is the distribution
function 𝑃 (highlighted in blue), which describes the distribution
of coded tensor after applying loss. With a packet loss rate of k%,
𝑃 (y|𝑓𝜙 (x)) is the probability of y being the result of randomly
masking k% of elements of the coded tensor 𝑓𝜙 (x) to zero.

Since during majority of the time a video stream does not suf-
fer from packet loss, we set the distribution to having 0 loss in
80% of the time. In the other 20% of time, 𝑃 (y|𝑓𝜙 (x)) is set to a
uniformly random choice in {10%,20%,. . . ,60%} to simulate different
levels of loss. This setup enables the codec to handle different values
of packet loss rate and maintain high quality during majority of
streaming.

Note that the probability distribution 𝑃 may not be expressed as
an explicit function of 𝜙 and is thus not differentiable. To train the
weights end to end, we use the Reinforce trick [21] to approximate
gradient by Monte-Carlo Sampling.

Moreover, for each packet to be separately entropy decodable,
the distribution information in entropy coding needs to be copied
inside every packet, causing up to 40% overhead. We solved this
problem by utilizing the trainability of neural networks. By adding
regularization during training to make each channel of the coded
tensor follow a zero-mean Laplace distribution, we can describe the
distribution of each channel solely by their variance. Since there

Figure 3: Data Scalable Codec performs close to Oracle H264 that
knows loss rate beforehand and sets redundancy accordingly

(a) FVC Dataset (b) Cloud Gaming Dataset
Figure 4: Our Data Scalable Codec has comparable coding efficiency
in different dataset and bpp

Figure 5: Data Scalable codec runs with decent speed on different
resolution videos with NVIDIA A40 GPU

are only 224 channels in DVC’s coded tensor, this gives a less than
5% overhead. This enables us to treat each packet loss as randomly
zeroing out the corresponding proportion of the coded tensor while
not inflating the size by too much.

4 PRELIMINARY RESULTS
4.1 Setup
Training: We trained our Data Scalable autoencoder by fine-tuning
from DVC model [25] on Vimeo-90K [36] dataset with generic
content. Learning rate was set to 10−4 and training for a new model
takes 3-4 hours with NVidia RTX 3080 GPU.
Test videos: We used 12 videos randomly sampled from two
datasets of real-time videos (Cloud Gaming [4] and Video Con-
ferencing [5]). Notice that none of the videos were in the training
set. This prevents the overfitting problem.
Testbed and network traces: To show the potential improvement
of Data Scalable codec in a streaming system, we built a packet-
level simulator that takes in bandwidth trace and reference video
as input, simulates the end-to-end video streaming process and then
outputs decoded frames and end-to-end delay for each frame. We
set round trip time to 200ms and uses drop-tail queue with length

Figure 6: Sampled 150ms Frame Comparison (Brown Line: Bandwidth Drop; Red Line: Video Freeze; Red Dotted: Late frame)

Figure 7: End to End Simulation shows that Data Scalable codec
could reduce video freeze with minor decrease in graphical quality.

of 25 packet to simulate congestion packet loss. The traces are
from eight LTE bandwidth traces in Mahimahi network-emulation
tool [28].

4.2 Result
We measure the Data-Scalability of different codecs in Fig. 3 with
fixed bit per pixel (bpp). Our codec with x% data arrival has sim-
ilar quality with encoding by H264 in x% of the original bitrate
(Oracle H264), which conforms closely to definition in §2.4. All
other methods fail to provide such Data-Scalability. FEC performs
better than Data Scalable codec if the loss rate is predicted closely,
but performs worse most of time. SVC, Error Concealment, and
Original Autoencoder [25] all have lower quality when random
packet loss occurs.

We compare the video compression efficiency of our codec with
state of art video codecs (H265 and H264) in Fig 4. Our codec has
on par performance with H264 is also close to H265 under different
bit per pixel (bpp). Comparing with H264 in terms of codec BDBR
metric [7], our codec increases bitrate by 0.14% on FVC dataset and
decreases bitrate by 12.9% on Cloud Gaming dataset, while H265 de-
creases bitrate by 34.6% and 39.4% respectively. Although our codec
retains decent compression performance, Data Scalability comes at
the cost of slightly worse quality than original Autoencoder.

In terms of speed. Our codec runs decently fast with a NVIDIA
A40 GPU. On 360p, 480p, 720p videos, it is able to achieve 107.5fps,
74.6fps, 27.3fps respectively. We admit that this speed is indeed
slower than traditional codecs [9] and is only workable with a high-
quality GPU. The future speedup methods of Data Scalable codec
is discussed in §5.

With Data Scalability, our codec enables better trade-off for real-
time video streaming. Figure 7 compares system using our codec
with other systems: Salsify [15] (Salsify CC + Loss frame skipping),
WebRTC [18] (GCC + H264 + FEC), WebRTC + SVC, WebRTC +

Error concealment. We measure average graphical quality (SSIM
dB) and the ratio of delayed frames (over 400ms) and video stall
(freeze over 200ms).

For baselines with comparable quality, our codec significantly
decreases video delay and stall ratio by 19x and 14x respectively.
This is because our system do not require retransmission during
packet loss but substitute with moderate quality drop. This makes
our average SSIM slightly lower than Salsify and WebRTC. But
when comparing with error concealment that also has little stall,
our solution achieves much better graphical quality.

We present a demo containing sampled frames from three de-
coded videos generated by different streaming logic on the same
reference video during a bandwidth drop period from 6Mbps to
2Mbps. As in Fig 6, system using Data Scalable codec is able to
decode with decent quality during packet loss, while others suffer
from video freeze and late frames.

5 FUTURE DIRECTIONS
5.1 System Design
Data Scalability Training: Our paper shows a particular example
that already improves Data-Scalablity. Nevertheless, this design
could be improved in many ways.

The first question is how to optimally set the loss distribution in
training to have better performance or shorter training time. We
have shown in §4 that training autoencoders with fixed loss dis-
tribution already improves the Data Scalability under various loss
rates. However, there could be smarter ways to set loss rate distri-
bution. For example, we could gradually increase the percentage
of higher loss rates (60%) to help codec learn to handle more loss
progressively.

Another question is how to better simulate the effects of real packet
losses during training. In §3, our training assumes that data losses
each element in the coded tensor has the same probability to be
zeroed. However, the autoencoder will then learn to handle all
masking outcomes for the coded tensor. A better solution might
be to re-couple packetization and training such that the codec has
prior knowledge of which parts of the coded tensor will be put into
a packet. This requires a new training pipeline but simplifies the
task of the Data Scalable autoencoder.
Compute resource constraints: Although our benchmark on
an NVIDIA A40 GPU shows promising result that Data Scalable
codec could work in real-time, running the Data Scalable codecs
with higher frame rate or on low-end devices requires more effort.

Besides general neural network speedup techniques including quan-
tization and TensorRT, some other possible options include having
“early exits" [26] in the neural network model to output a degraded
frame when computing resources could not match the frame rate
requirement, or specifically training fewer-layered decoder to adapt
to lower-end receivers.
Bitrate control: Any video coding scheme must be capable of
encoding a given video at a target bitrate set by bitrate adapta-
tion logic. Recent autoencoders have supported variable output
sizes [25], and our current implementation re-encodes the residual
with another model if size differs by too much. However, this adds
computational cost and do not fit closely with target bitrate. Future
work is needed to fit the data size to bitrate more efficiently and
precisely.
Protocol Design: Since Data Scalable coding has a fundamentally
different utility curve, new streaming protocols are needed. Two
questions that directly follow are:

(1) When does the decoder decide to decode the frame? In our
simulator, our decoder decode when the first packet of the next
frame arrive. However, in real networks, this may perform poorly
due to unorderly arrival of the packets. Moreover, in low RTT
networks, retransmission of the packets may give better quality
without causing notable delay to users.

(2) How to synchronize the reference frames of the encoder
and decoder after loss happens? On the decoder side, when we
decoded frame 𝑓 ′

𝑖
with incomplete data and use it as the reference

frame for the next frame 𝑓 ′
𝑖+1, it will be different from the perfect

reference frame 𝑓𝑖 from encoder side. The current solution is to send
the packet loss information back to the encoder and let encoder
updates its reference to replicate reference of decoder. However this
method has a single-trip delay and causes extra compute overhead.

5.2 More Opportunities
Elastic Utility and Active Queue Management: Traditionally,
utility of a flow only increases significantly when every packet
arrived (i.e., the “cliff” effect). This changes with data scalability
that the utility now gradually increases with delivered packets,
which is more elastic. This suggests that QoS AQM that maximizes
flow completion will be less suitable with Data Scalable Codecs.
Instead, early AQM schemes such as random early drop (RED)
might become are adapt as they tend to deliver some packets for
every flow.
CongestionControl: Congestion control aims to send data accord-
ing to actual bandwidth. Some aggressive algorithms like Salsify
CC [15] try to probe the bandwidth to have better utilization. How-
ever, when facing sudden bandwidth drop, aggressive algorithms
often suffer from packet loss. Data-Scalable codec could minimize
this damage by selectively probing bandwidth during more Data
Scalable frames.

Moreover, when facing unstable links, some congestion control
could result in extremely low utilization of the bandwidth [37].
With the ability to withstand packet loss, system with Data Scalable
codec may not need to reduce sending rate even when bandwidth
suddenly drops since it could increase back very soon.
Multimedia Streaming: Data Scalability could be applied to more
types of multimedia streaming with the increasing power of neural

network solutions [27, 39]. For example, smoothness is essential
for VR and AR to provide immersive experience [8]; volumetric
data consumes more bandwidth than 2D videos and thus has more
optimization potential [39]. Adding Data Scalability modification
to these applications could increases the system’s ability to provide
real-timeness robustly despite complex network conditions.

6 RELATEDWORK
Neural Network for Videos: Recent work uses neural-network-
based approach [13, 25, 33] to achieve on-par or even better com-
pression efficiency than the traditional codecs. These networks can
effectively capture the complex spatio-temporal patterns present
in video data, enabling higher compression ratios while preserving
high quality. There have also been advances in NN-based super
resolution [20, 38] that leverage receiver-size computation power
to achieve high-resolution video when bandwidth is limited. User
only send lower resolution videos, which will be upscaled to higher
resolution with receiver-side neural networks for better quality.
This technique can be implemented on top of Data Scalable codec
in low-bandwidth situation to get better quality together with loss-
resilience.
BetterMetric: Besides commonly used PSNR and SSIM, there have
also been extensitve research on aligning objective metric with user
experience. There is Frechet Inception Distance (FID) [16], which
is usually used to access quality of generative image in computer
vision that quantify the realism of image and LPIPS perceptual
metric [40], which uses a learnt neural network to approximate
human perceived similarity. There have also beenmetrics that try to
directly calculate video quality including STRRED [1] and FVD [34].
Networking for Real Time Application: There have also been
extensive research done recently across multiple network stacks to
improve experience in video conferencing. Notably, L4S uses an Ex-
plicit Congestion Notification (ECN) scheme to signal router queue
congestion to prevent loss and reduce delay [31]. GSO-Simulcast
uses a centralized controller aware of more network conditions to
control participants’ video streams in multi-party conferencing [24].
Tambur uses streaming code to add FEC to a group of frames instead
of a single frame to improve efficiency of traditional FEC [30]. Data
Scalable codec could be combined with these methods to improve
resiliency to packet loss with the cost of more computation.

7 CONCLUSION
This paper introduces Data Scalable codec for real-time video,
whose key distinction is that its quality does not depend on com-
plete data arrival but gradually increases with each new packet. We
create the first Data Scalable codec by training neural autoencoders
to perform under various loss rates. Admittedly, there remain chal-
lenges for such a system to be put into practice. We hope this paper
sparks more discussion in broader community to fully exploit its
potential.

ACKNOWLEDGEMENT
We thank the anonymous reviewers at EMS, Junchen Jiang, Xu
Zhang, and Yuanhang Su for their feedback and suggestions.

REFERENCES
[1] 2013. ST-RRED Video Quality Predictor. http://live.ece.utexas.edu/research/

quality/ST-RRED. (2013).
[2] 2020. UVG Dataset: 50/120fps 4K sequences for video codec analysis and devel-

opment. https://ultravideo.fi/. (2020).
[3] 2020. WebRTC Media Servers. https://webrtc.ventures/2020/12/

webrtc-media-servers-sfus-vs-mcus/. (2020).
[4] 2021. Cloud-Gaming-Video-Dataset . https://github.com/stootaghaj/

Cloud-Gaming-Video-Dataset. (2021).
[5] 2022. FVC Workshop. https://fvc-workshop.github.io/. (2022).
[6] 2023. Amazon Mechanical Turk. https://www.mturk.com/. (2023).
[7] 2023. Bjøntegaard-Delta Interpolation. https://github.com/FAU-LMS/bjontegaard.

(2023).
[8] 2023. Features of WebRTC VR Streaming. https://flashphoner.com/

features-of-webrtc-vr-streaming/. (2023).
[9] 2023. Handbrake Codec Performance. https://handbrake.fr/docs/en/latest/

technical/performance.html. (2023).
[10] 2023. WebRTC. https://webrtc.org/. (2023).
[11] Claudio Alberti, Daniele Renzi, Christian Timmerer, Christopher Mueller, Stefan

Lederer, Stefano Battista, and Marco Mattavelli. 2013. Automated QoE evaluation
of Dynamic Adaptive Streaming over HTTP. In 2013 Fifth International Workshop
on Quality of Multimedia Experience (QoMEX). 58–63. https://doi.org/10.1109/
QoMEX.2013.6603211

[12] Nabajeet Barman and Maria G. Martini. 2019. QoE Modeling for HTTP Adaptive
Video Streaming–A Survey and Open Challenges. IEEE Access 7 (2019), 30831–
30859. https://doi.org/10.1109/ACCESS.2019.2901778

[13] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian,
and Dimitris Samaras. 2022. Swift: Adaptive Video Streaming with Layered
Neural Codecs. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 103–118. https:
//www.usenix.org/conference/nsdi22/presentation/dasari

[14] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. 2017.
A Quality-of-Experience Index for Streaming Video. IEEE Journal of Selected
Topics in Signal Processing 11, 1 (2017), 154–166. https://doi.org/10.1109/JSTSP.
2016.2608329

[15] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. 2018. Salsify:{Low-Latency} Network Video through Tighter
Integration between a Video Codec and a Transport Protocol. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18). 267–282.

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. InAdvances in Neural Information Processing Systems,
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

[17] Tobias Hossfeld, Raimund Schatz, Ernst Biersack, and Louis Plissonneau. 2013.
Internet Video Delivery in YouTube: From Traffic Measurements to Quality of Expe-
rience. Vol. 7754. 264–301. https://doi.org/10.1007/978-3-642-36784-7_11

[18] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil Zuss-
man. 2018. Performance Evaluation of WebRTC-Based Video Conferencing.
SIGMETRICS Perform. Eval. Rev. 45, 3 (mar 2018), 56–68. https://doi.org/10.1145/
3199524.3199534

[19] Jaeyeon Kang, Seoung Wug Oh, and Seon Joo Kim. 2022. Error Compensation
Framework for Flow-Guided Video Inpainting. (2022). arXiv:cs.CV/2207.10391

[20] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han. 2020.
Neural-Enhanced Live Streaming: Improving Live Video Ingest via Online Learn-
ing. In Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM ’20). Association for Computing Ma-
chinery, New York, NY, USA, 107–125. https://doi.org/10.1145/3387514.3405856

[21] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
arXiv:http://arxiv.org/abs/1312.6114v10

[22] Sunil Kumar, Liyang Xu, Mrinal K Mandal, and Sethuraman Panchanathan. 2006.
Error resiliency schemes in H. 264/AVC standard. Journal of Visual Communica-
tion and Image Representation 17, 2 (2006), 425–450.

[23] Weiping Li. 2001. Overview of fine granularity scalability in MPEG-4 video
standard. IEEE Transactions on circuits and systems for video technology 11, 3
(2001), 301–317.

[24] Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao Cui, Jing Li, Shi Bai, Ziyue
Zhang, Dennis Cai, Hongqiang Harry Liu, and Ming Zhang. 2022. GSO-
Simulcast: Global Stream Orchestration in Simulcast Video Conferencing Sys-
tems. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22).
Association for Computing Machinery, New York, NY, USA, 826–839. https:
//doi.org/10.1145/3544216.3544228

[25] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong
Gao. 2019. DVC: An End-to-end Deep Video Compression Framework. (2019).
arXiv:eess.IV/1812.00101

[26] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. 2022. Split
Computing and Early Exiting for Deep Learning Applications: Survey and Re-
search Challenges. ACM Comput. Surv. 55, 5, Article 90 (dec 2022), 30 pages.
https://doi.org/10.1145/3527155

[27] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant Neural Graphics Primitives with a Multiresolution Hash Encoding. CoRR
abs/2201.05989 (2022). arXiv:2201.05989 https://arxiv.org/abs/2201.05989

[28] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate {Record-and-
Replay} for {HTTP}. In 2015 USENIX Annual Technical Conference (USENIX ATC
15). 417–429.

[29] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring,
and Bernhard Feiten. 2017. A bitstream-based, scalable video-quality model for
HTTP adaptive streaming: ITU-T P.1203.1. In Ninth International Conference on
Quality of Multimedia Experience (QoMEX). IEEE, Erfurt. https://doi.org/10.1109/
QoMEX.2017.7965631

[30] Michael Rudow, Francis Y Yan, Abhishek Kumar, Ganesh Ananthanarayanan,
Martin Ellis, and KV Rashmi. 2023. Tambur: Efficient loss recovery for videocon-
ferencing via streaming codes. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 953–971.

[31] Koen De Schepper and Bob Briscoe. 2023. The Explicit Congestion Notification
(ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput (L4S). RFC
9331. (Jan. 2023). https://doi.org/10.17487/RFC9331

[32] Anika Seufert, Florian Wamser, David Yarish, Hunter Macdonald, and Tobias
Hoßfeld. 2021. QoE Models in the Wild: Comparing Video QoE Models Using
a Crowdsourced Data Set. In 2021 13th International Conference on Quality of
Multimedia Experience (QoMEX). 55–60. https://doi.org/10.1109/QoMEX51781.
2021.9465422

[33] Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha Venkatapathy, Mehrdad
Khani, Sadjad Fouladi, Mohammad Alizadeh, Frédo Durand, and Vivienne Sze.
2023. Gemino: Practical and Robust Neural Compression for Video Conferencing.
(2023). arXiv:cs.NI/2209.10507

[34] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier,
Marcin Michalski, and Sylvain Gelly. 2018. Towards Accurate Generative
Models of Video: A New Metric & Challenges. CoRR abs/1812.01717 (2018).
arXiv:1812.01717 http://arxiv.org/abs/1812.01717

[35] Nikolas Wehner, Anika Seufert, Tobias Hoßfeld, and Michael Seufert. 2023. Ex-
plainable Data-Driven QoE Modelling with XAI. In 2023 15th International Con-
ference on Quality of Multimedia Experience (QoMEX). 7–12. https://doi.org/10.
1109/QoMEX58391.2023.10178499

[36] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019.
Video enhancement with task-oriented flow. International Journal of Computer
Vision 127, 8 (2019), 1106–1125.

[37] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby,
Philip Levis, and Keith Winstein. 2018. Pantheon: the training ground for
Internet congestion-control research. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18). USENIX Association, Boston, MA, 731–743. https:
//www.usenix.org/conference/atc18/presentation/yan-francis

[38] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han.
2018. Neural Adaptive Content-aware Internet Video Delivery. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA, 645–661. https://www.usenix.org/conference/osdi18/
presentation/yeo

[39] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2022. YuZu: Neural-
Enhanced Volumetric Video Streaming. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA,
137–154. https://www.usenix.org/conference/nsdi22/presentation/zhang-anlan

[40] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In CVPR.

http://live.ece.utexas.edu/research/quality/ST-RRED
http://live.ece.utexas.edu/research/quality/ST-RRED
https://ultravideo.fi/
https://webrtc.ventures/2020/12/webrtc-media-servers-sfus-vs-mcus/
https://webrtc.ventures/2020/12/webrtc-media-servers-sfus-vs-mcus/
https://github.com/stootaghaj/Cloud-Gaming-Video-Dataset
https://github.com/stootaghaj/Cloud-Gaming-Video-Dataset
https://fvc-workshop.github.io/
https://www.mturk.com/
https://github.com/FAU-LMS/bjontegaard
https://flashphoner.com/features-of-webrtc-vr-streaming/
https://flashphoner.com/features-of-webrtc-vr-streaming/
https://handbrake.fr/docs/en/latest/technical/performance.html
https://handbrake.fr/docs/en/latest/technical/performance.html
https://webrtc.org/
https://doi.org/10.1109/QoMEX.2013.6603211
https://doi.org/10.1109/QoMEX.2013.6603211
https://doi.org/10.1109/ACCESS.2019.2901778
https://www.usenix.org/conference/nsdi22/presentation/dasari
https://www.usenix.org/conference/nsdi22/presentation/dasari
https://doi.org/10.1109/JSTSP.2016.2608329
https://doi.org/10.1109/JSTSP.2016.2608329
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1007/978-3-642-36784-7_11
https://doi.org/10.1145/3199524.3199534
https://doi.org/10.1145/3199524.3199534
http://arxiv.org/abs/cs.CV/2207.10391
https://doi.org/10.1145/3387514.3405856
http://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://doi.org/10.1145/3544216.3544228
https://doi.org/10.1145/3544216.3544228
http://arxiv.org/abs/eess.IV/1812.00101
https://doi.org/10.1145/3527155
http://arxiv.org/abs/2201.05989
https://arxiv.org/abs/2201.05989
https://doi.org/10.1109/QoMEX.2017.7965631
https://doi.org/10.1109/QoMEX.2017.7965631
https://doi.org/10.17487/RFC9331
https://doi.org/10.1109/QoMEX51781.2021.9465422
https://doi.org/10.1109/QoMEX51781.2021.9465422
http://arxiv.org/abs/cs.NI/2209.10507
http://arxiv.org/abs/1812.01717
http://arxiv.org/abs/1812.01717
https://doi.org/10.1109/QoMEX58391.2023.10178499
https://doi.org/10.1109/QoMEX58391.2023.10178499
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/osdi18/presentation/yeo
https://www.usenix.org/conference/osdi18/presentation/yeo
https://www.usenix.org/conference/nsdi22/presentation/zhang-anlan

	Abstract
	1 Introduction
	2 Motivation
	2.1 Real-Time Video Communication
	2.2 Previous Methods
	2.3 Quality of Experience
	2.4 Data Scalable Codec

	3 Neural Codec for Data Scalablility
	3.1 Autoencoder Structure
	3.2 Data Scalable Customization

	4 Preliminary Results
	4.1 Setup
	4.2 Result

	5 Future Directions
	5.1 System Design
	5.2 More Opportunities

	6 Related Work
	7 Conclusion
	References

