



# Caravan: Practical Online Learning of In-Network ML Models with Labeling Agents

**Qizheng Zhang**, Ali Imran, Enkeleda Bardhi, Tushar Swamy, Nathan Zhang, Muhammad Shahbaz, Kunle Olukotun

This project was published at OSDI 2024.

A shorter version was also presented at the **PACMI'24** workshop.

#### Roadmap

- ML + Online traffic analysis in networking
- Two approaches: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both?
  - Three challenges and two insights to enable

- Putting insights together: Caravan
- Limitations and future work

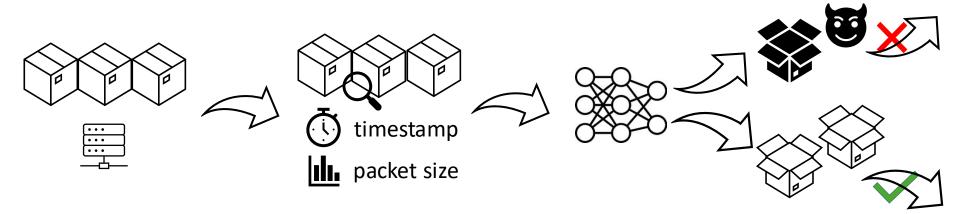
#### Roadmap

- ML + Online traffic analysis in networking
- Two approaches: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both?
  - Three challenges and two insights to enable

- Putting insights together: Caravan
- Limitations and future work

# Machine learning (ML) in online traffic analysis

• Motivating use case: Intrusion detection in a network



(1) Incoming packets (2) Feature extraction (3) ML inference (4) Drop or keep packets

# Why ML-based online traffic analysis?

- Diverse use cases
  - Enhancing infrastructure security
  - Improving application performance
- Growing incentive for adoption
  - Complexity of network traffic patterns
  - Encrypted network protocols



Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity

University of Chicago

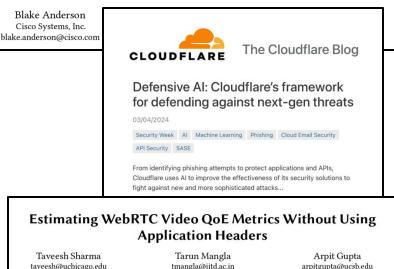
USA

Junchen Jiang

junchenj@uchicago.edu

University of Chicago

USA



IIT Delhi

India

Nick Feamster

feamster@uchicago.edu

University of Chicago

USA

UCSB

USA

#### Roadmap

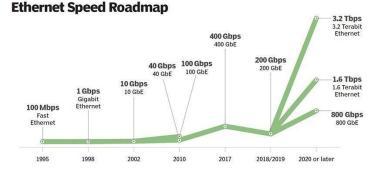
- ML + Online traffic analysis in networking
- Two approaches: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both?
  - Three challenges and two insights to enable



- Putting insights together: Caravan
- Limitations and future work

### Challenge #1: Networks are getting faster

- More data in the network
  - Ethernet line-rate: 10 Gbps (2002) to 800 Gbps (2024)
- Lower response latency in the network
  - Datacenter RTT: 100µs (2008) to 5µs (2023)
- Strict latency & throughput requirements
  - A need for small-batch or per-packet inference



6

# Small and specialized in-network models (fast)

• In-network ML in data plane devices for real-time, per-packet inference



References

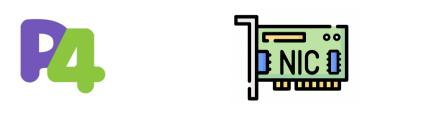
[1] Leo: Online ML-based Traffic Classification at Multi-Terabit Line Rate (NSDI '24)

[2] Re-architecting Traffic Analysis with Neural Network Interface Cards (NSDI '22)

[3] Taurus: a data plane architecture for per-packet ML (ASPLOS '22)

# Small and specialized in-network models (fast)

• In-network ML in data plane devices for real-time, per-packet inference





Programmable switches E.g. Leo [NSDI '24] SmartNICs E.g. N3IC [NSDI '22] Hardware ASICs E.g. Taurus [ASPLOS '22]

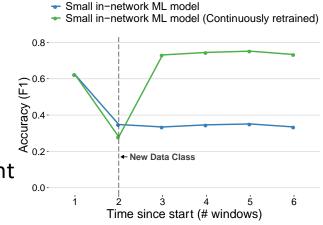
*References* [1] *Leo: Online*  Why? Reduced *data movement* and *response latency* 

[2] Re-architecting Traffic Analysis with Neural Network Interface Cards (NSDI '22)

[3] Taurus: a data plane architecture for per-packet ML (ASPLOS '22)

### Challenge #2: Networks are getting more complex

- Are specialized in-network ML models alone good enough? **No!**
- More complex traffic patterns
  - High-dimensional (thousands of features)
  - Long-context (millions of packets in a flow)
- More diverse deployment environments
  - Training & deployment environment can differ
  - Train-once-and-deploy for small models is insufficient



In this work, we assume that all packet payload contents are unavailable, so payload-based approaches like DPI cannot be used.

• Domain-specific **foundation models** for networking, security, etc.

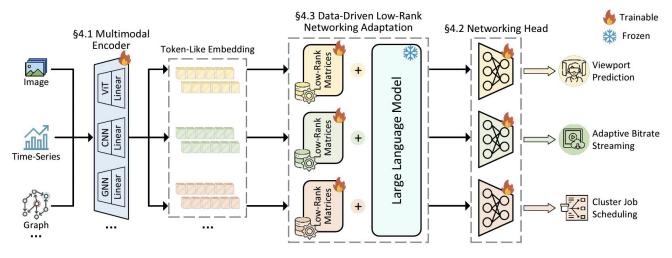
References

[1] NetLLM: Adapting Large Language Models for Networking (SIGCOMM '24)

[2] netFound: Foundation Model for Network Security (arXiv)

[3] Microsoft Copilot for Security. https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-copilot-security.

• Domain-specific foundation models for networking, security, etc.



#### NetLLM [SIGCOMM '24]

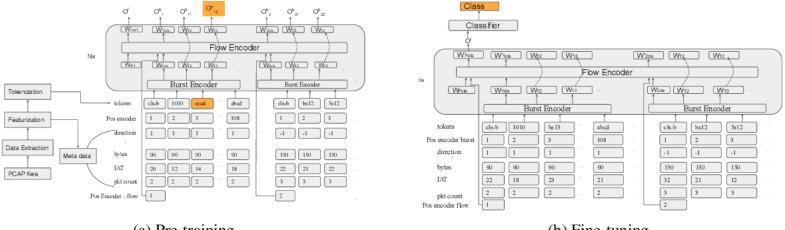
References

[1] NetLLM: Adapting Large Language Models for Networking (SIGCOMM '24)

[2] netFound: Foundation Model for Network Security (arXiv)

[3] Microsoft Copilot for Security. https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-copilot-security.

• Domain-specific foundation models for networking, security, etc.



(a) Pre-training

(b) Fine-tuning

References

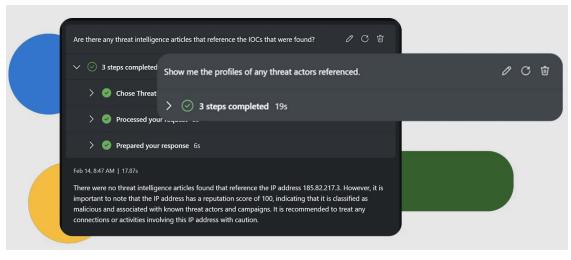
[1] NetLLM: Adapting Large Language Models for Networking (SIGCOMM '24)

[2] netFound: Foundation Model for Network Security (arXiv)

[3] Microsoft Copilot for Security. https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-copilot-security.

netFound [arXiv]

• Domain-specific foundation models for networking, security, etc.



#### Microsoft Copilot for Security

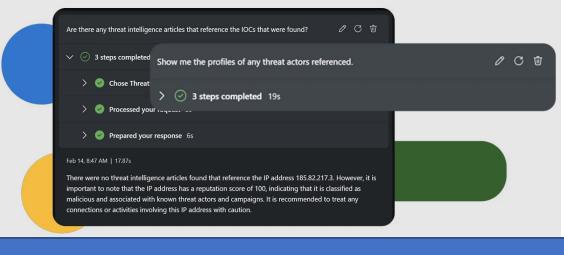
References

[1] NetLLM: Adapting Large Language Models for Networking (SIGCOMM '24)

[2] netFound: Foundation Model for Network Security (arXiv)

[3] Microsoft Copilot for Security. https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-copilot-security.

• Domain-specific foundation models for networking, security, etc.



References [1] NetLLM: Ad

#### Why? Better in-depth analysis and generalization

[2] netFound: Foundation Model for Network Security (arXiv)

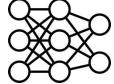
[3] Microsoft Copilot for Security. https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-copilot-security.

# Two approaches: Small and large models

#1: Small and specialized in-network models (fast)

#2: Large and versatile foundation models (accurate)

Question: Can we be both, *fast and accurate*?

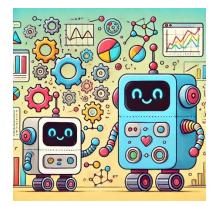


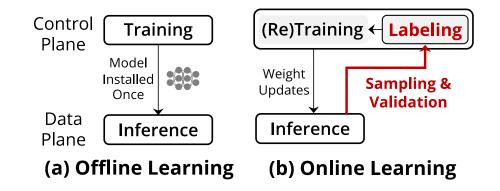




#### Our proposal: Online learning to the rescue

• Large and small models should work *jointly* online





Large models can guide small models via online learning to achieve both *speed and accuracy* 

#### Roadmap

- ML + Online traffic analysis in networking
- Two approaches: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both? Online Learning
  - Three challenges and two insights to enable practical online learning
- Putting insights together: Caravan
- Limitations and future work

Three challenges of using large models (e.g. FMs) online

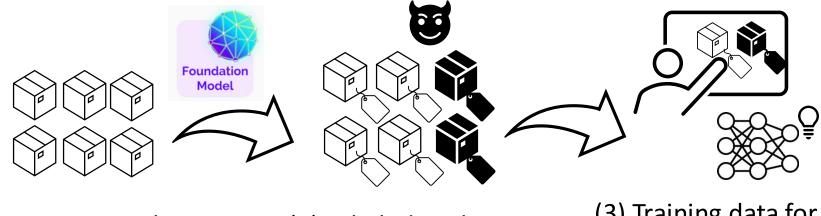
High cost

Low speed

#### Poor control over output

#### Insight #1: Large models are good sources of *labeling*

• Large models can be used to generate **labeled** online data for training small models (online learning).



(1) Incoming packets

(2) Labeled packets

(3) Training data for small models

- Why *labeling* in an online system?
- We start with the naïve way of using a foundation model, e.g. GPT-4:



Help me analyze which of the following network flows are malicious. [Data here]



Of course, I'd be happy to help! I'll do my best to provide a benign or malicious classification based on the provided information and my knowledge. Network flow 1:

- Decision: FTP-Patator
- Explanation: The dst port is 21 (FTP). The pattern is very similar to FTP-Patator from the labeled data, with many SYN and ACK flags and a low average packet length.

• Let's adapt this chat to be a *labeling* request:



Help me analyze which of the following network flows are malicious. I only need a binary label for each flow. [Data here]



| 1     |  |
|-------|--|
| 0     |  |
| 1     |  |
| 0     |  |
| 0     |  |
| 1     |  |
| ••••• |  |
|       |  |

• Let's adapt this chat to be a *labeling* request:



Help me analyze which of the following network flows are malicious. I only need a binary label for each flow. [Data here]



Better control over output

• Let's adapt this chat to be a *labeling* request:



Help me analyze which of the following network flows are malicious. I only need a binary label for each flow. [Data here]



Better control over output

• Instead of repeatedly querying an LLM to label data, we ask it to generate a (distilled) *labeling program* that can be cached:



Help me analyze which of the following network flows are malicious. **Generate a Python program for this.** [Data here]



def label\_network\_flow (flow):

Labels a network flow as benign (0) or malicious (1) based on certain heuristics. This function is designed to be conservative and only labels a flow as malicious when it is highly confident.

:param flow: A tuple containing features of the flow. :return: An integer label, 0 for benign and 1 for malicious.

.....

• Instead of repeatedly querying an LLM to label data, we ask it to generate a (distilled) *labeling program* that can be cached:



Help me analyze which of the following network flows are malicious. **Generate a Python program for this.** [Data here]



def label\_network\_flow (flow):

Labels a network flow as benign (0) or malicious (1) based on certain heuristics.

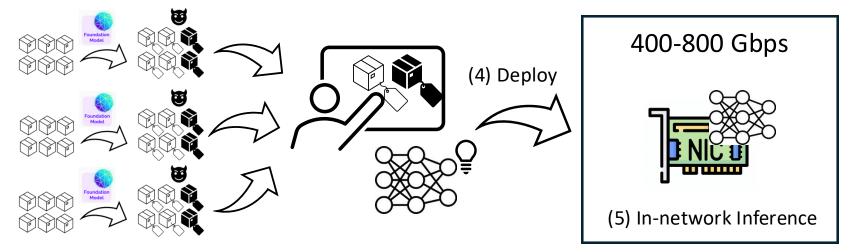
This function is designed to be conservative an is highly confident.

:param flow: A tuple containing features of the :return: An integer label, 0 for benign and 1 for Lower cost

#### Higher speed

#### Insight #1: Large models are good sources of *labeling*

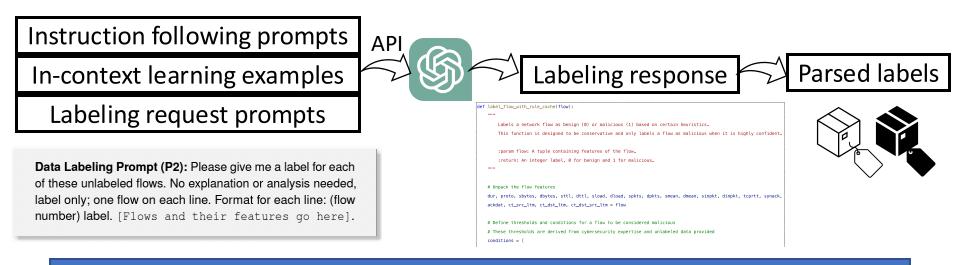
- Data labeling & online learning **do not** need to happen in real-time.
  - Further acceleration through large-batch inference, parallelization, etc.



Large models can be good sources of *labeling* in online scenarios

#### Example: Adapting GPT-4 as a labeling source

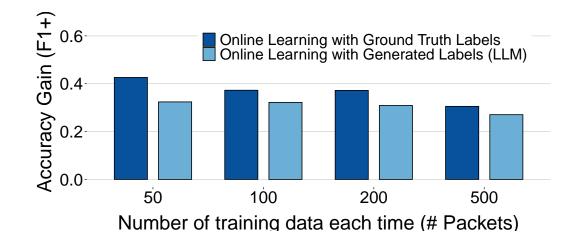
• We adapted GPT-4 for data labeling in the intrusion detection use case.



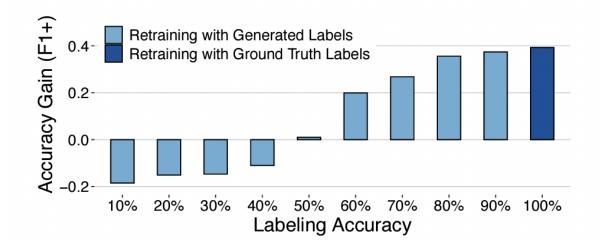
#### *Off-the-shelf* foundation models can be adapted to be labeling sources

# Generated labels from GPT-4 for online learning

- We use generated labels from GPT-4, as well as ground truth labels (from dataset publishers), for online learning.
- Result: The accuracy gains from online learning are comparable.



- Foundation models can produce noisy labels (partially incorrect).
  - And highly inaccurate generated labels can backfire.
- If ground truth labels are available online in the network, use them!



- We discuss potential solutions to this problem in the OSDI paper.
  - Offline

• *Benchmarking* the performance of foundation models on domain-specific tasks

| <b>(</b> | Category<br>Math |             |                                    |                  | Math<br>#models: 127 (93%) #votes: 228,144 (13%) |                  |                |             |                     |  |
|----------|------------------|-------------|------------------------------------|------------------|--------------------------------------------------|------------------|----------------|-------------|---------------------|--|
|          | Rank*<br>(UB)    | Delta 🔺     | Model 🔺                            | Arena<br>Score   | 95% CI 🔺                                         | Votes 🔺          | Organization A | License 🔺   | Knowledge<br>Cutoff |  |
|          | 1 †              | 5           | Claude 3.5 Sonnet                  | 1274             | +7/-8                                            | 7138             | Anthropic      | Proprietary | 2024/4              |  |
|          | 1 ↑              | 1           | Gemini-1.5-Pro-Exp-0827            | 1271             | +9/-8                                            | 3431             | Google         | Proprietary | 2023/11             |  |
|          | 1                | 0           | ChatGPT-40-latest (2024-<br>08-08) | 1269             | +9/-10                                           | 4029             | OpenAI         | Proprietary | 2023/10             |  |
|          | 1 †              | 1           | Gemini-1.5-Pro-Exp-0801            | 1258             | +9/-8                                            | 3723             | Google         | Proprietary | 2023/11             |  |
| 2 t      | 2 1              | 3           | GPT-40-2024-05-13                  | 1257             | +7/-6                                            | 10817            | OpenAI         | Proprietary | 2023/10             |  |
|          | 2<br>Idae w      | ₀<br>ith MT | Grok-2-08-13<br>Bench and Chatbo   | 1252<br>ot Arena | +14/-13<br>(NeurIP                               | 1258<br>S '2 2 ) | XAI            | Proprietary | 2024/3              |  |

[2] Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language Models (arXiv)

- We discuss potential solutions to this problem in the OSDI paper.
  - Offline
    - *Benchmarking* the performance of foundation models on domain-specific tasks



References

[1] Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena (NeurIPS '23)

[2] Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language Models (arXiv)

- We discuss potential solutions to this problem in the OSDI paper.
  - Offline
    - *Benchmarking* the performance of foundation models on domain-specific tasks
  - Online
    - Validating outputs from a foundation model

#### Unlocking LLM Confidence Through Logprobs



🖑 30 🔾

□ □ …

In the realm of AI-driven responses, understanding the confidence level of generated text is crucial for evaluating model performance and enhancing user trust. The use of log probabilities (or logprobs) serves as a beacon of insight into the decision-making process of language models.

# LLM Toolkit: Validation is all you need

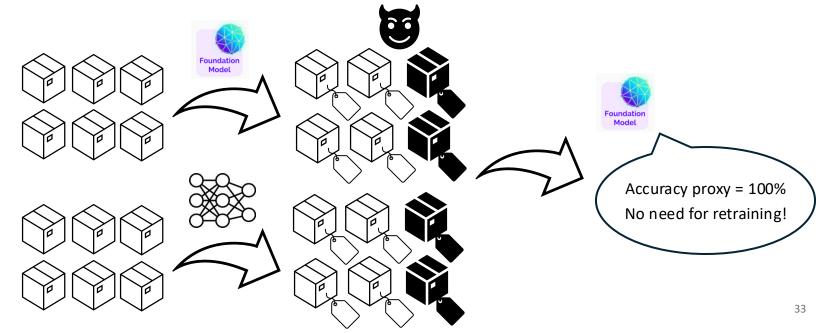
MAY 20, 2024 BY JEFF SCHOMAY BLOG

Forget chains-structured output and validation are all you need.

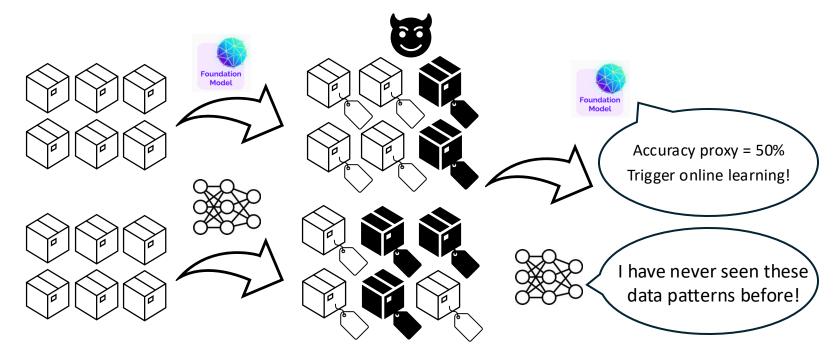
At Mechanical Orchard, we're building complex, bespoke, explainable AI agents to interrogate legacy mainframe systems autonomously. We've used a wide range of popular AI libraries and frameworks to bring LLM best practices into our codebase. The one I've been absolutely loving is <u>Instructor</u>, because modeling data is so much more powerful than modeling prompts. In this technical article, I'll show you why.

#### Insight #2: Online learning can be *triggered* sparsely

• Generated labels from large models can be used to **approximate** the online accuracy of small models (which we call accuracy proxy).



#### Insight #2: Online learning can be *triggered* sparsely

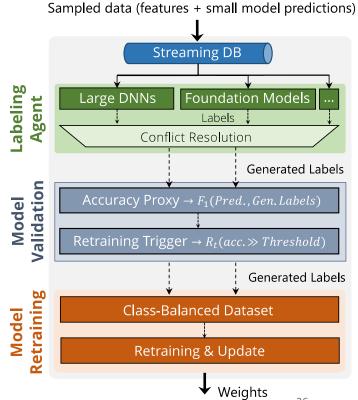


Sparse online learning via *accuracy proxy* avoids excessive retraining

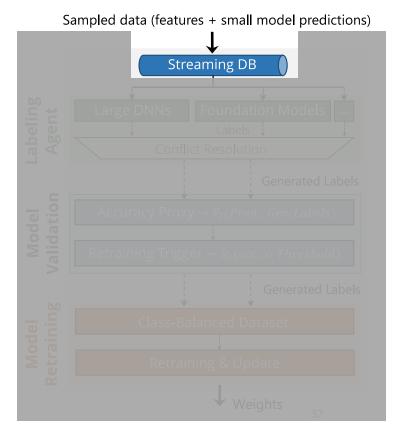
#### Roadmap

- ML + Online traffic analysis in networking
- Two approaches: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both? Online Learning
  - Three challenges and two insights to enable practical online learning
- Putting insights together: Caravan
- Limitations and future work

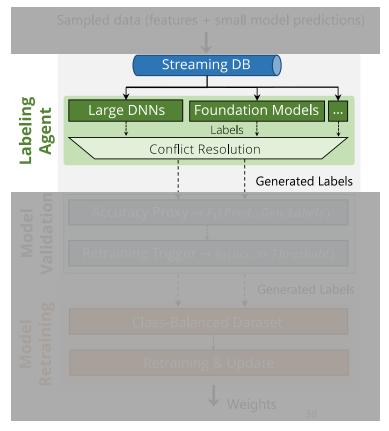
• Caravan: A system for practical online learning of in-network ML models



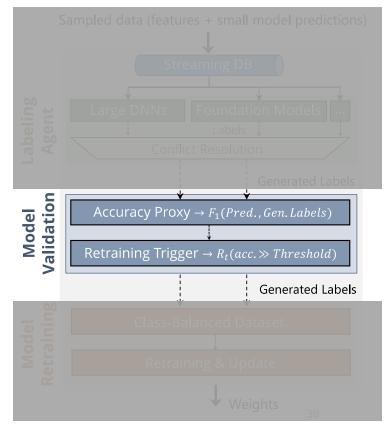
- Online data is collected and sampled.
- Samples are stored in a streaming DB.



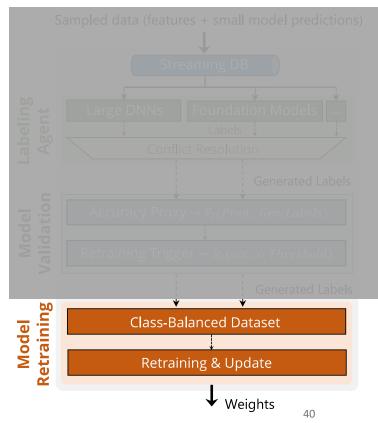
- Labeling agent
  - Retrieves batched data from streaming DB
  - Generates labels for these data via userdefined large models



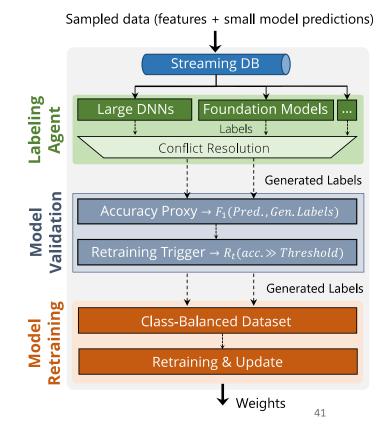
- Model validation
  - Computes accuracy proxy
  - Decides if online learning is necessary

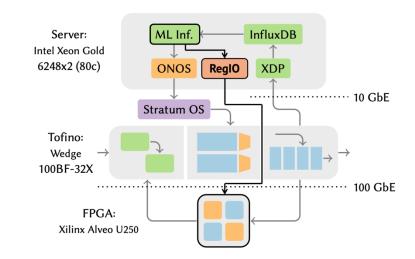


- Model retraining
  - Forms a retraining dataset
  - Retrains the model
  - Sends updated weights to the small model

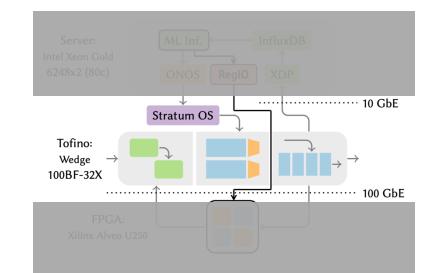


- Caravan: A system for practical online learning of in-network ML models
  - Labeling agent
  - Model validation
  - Model retraining

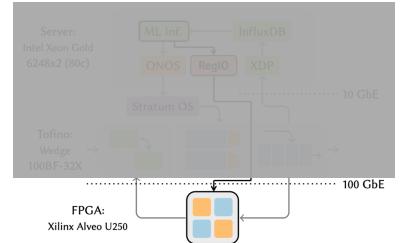




- A *Tofino switch* for packet parsing and deparsing
- We send and receive packets with MoonGen (IMC '15).

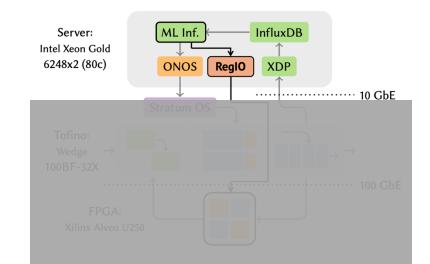


- An FPGA for running the in-network ML model
  - We program the architecture of the ML model with the Spatial language (PLDI '18), a Scala-based higher-level hardware description language.

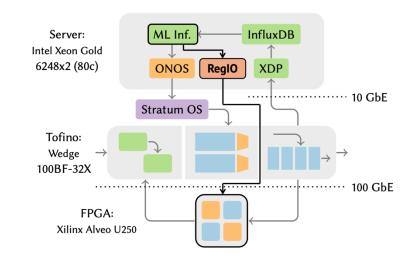


Thanks to Spatial, no Verilog-level programming needed. However, FPGA simulation is still the most time-consuming part of the implementation...

- A compute server for the Caravan software
  - In the end-to-end experiment, we use CPU for online model training as the sampled training dataset size is relatively small.
  - For simulations and micro-benchmarking (details in the paper), we use GPU.



- A *Tofino switch* for packet parsing/deparsing
- An FPGA for running in-network ML model
- A server for the Caravan software



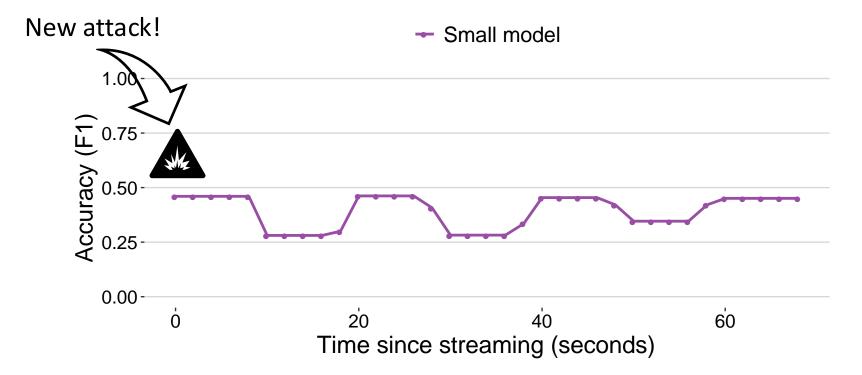
## Evaluation setup

- 2 applications and 3 datasets
  - Intrusion detection (security)
  - IoT traffic classification (performance)
- 2 evaluation metrics
  - ML model accuracy: F1 score
  - System cost of online learning: CPU/GPU time, memory usage, FPGA usage

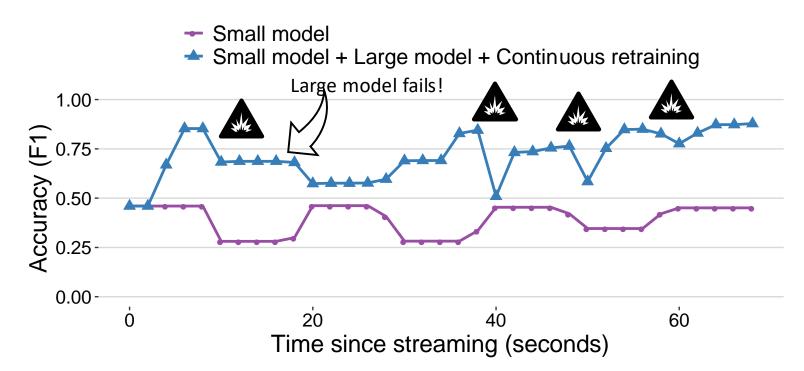
## Example: End-to end intrusion detection

- A dataset with 35 million packets
- 7 different types of attacks
- A 7-layer DNN that runs at line-rate in FPGA
- Classify each packet as malicious or benign
- Packet rate: 0.5 million packets/sec
- Run inference + compute accuracy on *every* packet
- Sample rate for the control plane: 0.1%

# We start with the small in-network model



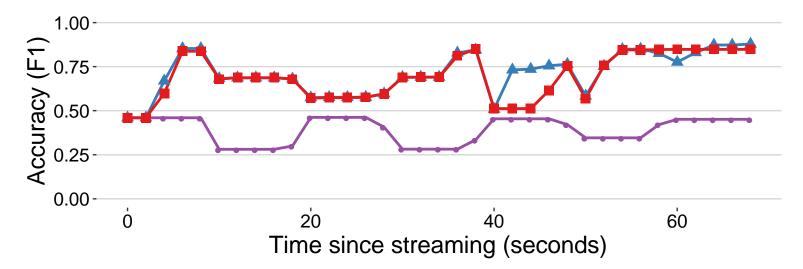
What if the large model guides the small model (via online learning)?



What if we introduce selective retraining via accuracy proxy (Caravan)?

- Small model

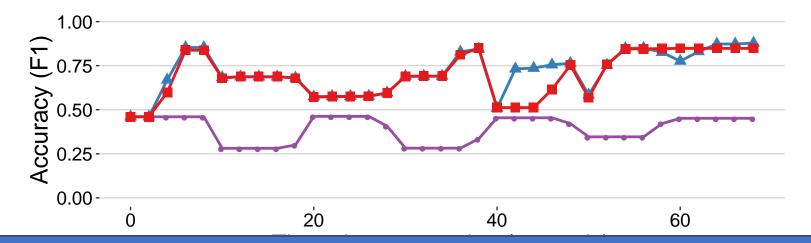
- Small model + Large model + Continuous retraining
- Small model + Large model + Smart retraining (Caravan)



What if we introduce selective retraining via accuracy proxy (Caravan)?

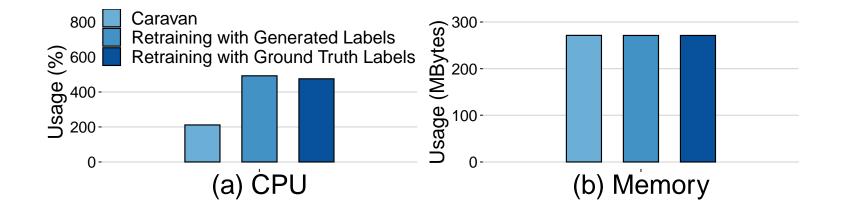
- Small model

- Small model + Large model + Continuous retraining
- Small model + Large model + Smart retraining (Caravan)



Caravan keeps in-network ML models up-to-date with changing traffic dynamics

# Caravan saves backend computation from excessive retraining



Caravan reduces backend CPU usage by an average of 56.23%

#### Roadmap

- ML + Online traffic analysis in networking
- Two approaches: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both? Online Learning
  - Three challenges and two insights to enable practical online learning
- Putting insights together: Caravan
- Limitations and future work

#### Scope and limitations

When to use Caravan

- ✓ ML inference on streaming data in real-time (e.g. edge, near-data)
- Complex and dynamic data patterns (e.g. data drifts, concept drifts)
- ✓ No ground truth labels available (e.g. no human intervention)

When *not* to use Caravan

× ML inference on offline data (e.g. analytics of batch or historical data)

- × Simple and static data patterns (e.g. small local area networks)
- × Ground truth labels readily available (e.g. human-in-the-loop)

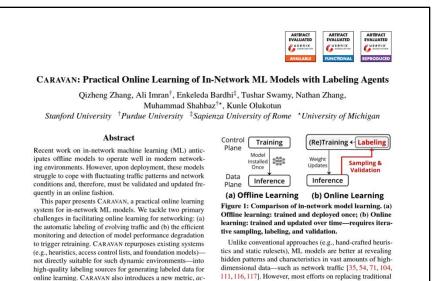
# More details in our OSDI paper



- Effectiveness of weak supervision labels
- GPT-4 labeling prompts

...

- Example of GPT-4 generations
- System cost and latency analysis
- Artifact (software + hardware)



artifact

paper

#### Conclusion



- Two approaches for ML-based online traffic analysis: Small models (fast) v.s. Large models (accurate)
- How to achieve the benefits of both? Online Learning
  - Three challenges of large models online: High cost, low speed, poor control
  - Two insights: Large models as labeling sources, and sparse retraining
  - Putting insights together: Caravan
- Beyond networking
  - Self-improving AI systems
  - ML systems in dynamic environments
  - Integration of LLMs and autonomous systems

#### Conclusion



- We are working on an open-source library for making Caravan (and generative data labeling) easy to use.
- I am open to questions, chats and collaborations.
  - Contact: qizhengz@stanford.edu



library