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* How to achieve the benefits of both? _
* Three challenges and two insights to enable _
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e Limitations and future work



Roadmap

* ML + Online traffic analysis in networking

* Two approaches: Small models (fast) v.s. Large models (accurate)

* How to achieve the benefits of both? _
* Three challenges and two insights to enable _

 Putting insights together: Caravan

e Limitations and future work



Machine learning (ML) in online traffic analysis
* Motivating use case: Intrusion detection in a network
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Why ML-based online traffic analysis?

e Diverse use cases

* Enhancing infrastructure security
* Improving application performance

* Growing incentive for adoption
* Complexity of network traffic patterns

* Encrypted network protocols

Machine Learning for Encrypted Malware Traffic Classification:
Accounting for Noisy Labels and Non-Stationarity

Blake Anderson
Cisco Systems, Inc.
blake.anderson@cisco.com

CLOUDFLAkE The Cloudflare Blog

# =
Junchen Jiang Nick Feamster
junchenj@uchicago.edu feamster@uchicago.edu
T L S University of Chicago University of Chicago
USA USA

Defensive Al: Cloudflare's framework
for defending against next-gen threats

Al Machine Learning  Phishing Cloud Email Security
APl Security  SASE

From identifying phishing attempts to protect applications and APIs,
Cloudflare uses Al to improve the effectiveness of its security solutions to

fight against new and more sophisticated attacks...

Estimating WebRTC Video QoE Metrics Without Using
Application Headers

Taveesh Sharma Tarun Mangla Arpit Gupta
taveesh@uchicago.edu tmangla@iitd.ac.in arpitgupta@ucsb.edu
IIT Delhi UCSB
USA

University of Chicago
India




Roadmap

* ML + Online traffic analysis in networking

* Two approaches: Small models (fast) v.s. Large models (accurate)

* How to achieve the benefits of both? _
* Three challenges and two insights to enable _

 Putting insights together: Caravan

e Limitations and future work



Challenge #1: Networks are getting faster

* More data in the network
* Ethernet line-rate: 10 Gbps (2002) to 800 Gbps (2024)

* Lower response latency in the network T S —
* Datacenter RTT: 100us (2008) to 5us (2023) . s
* Strict latency & throughput requirements =

* A need for small-batch or per-packet inference



Small and specialized in-network models (fast)

* In-network ML in data plane devices for real-time, per-packet inference
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E.g. Leo [NSDI ‘24] E.g. N3IC [NSDI 22] E.g. Taurus [ASPLOS ‘22]
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Small and specialized in-network models (fast)

* In-network ML in data plane devices for real-time, per-packet inference
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Programmable switches SmartNICs Hardware ASICs
E.g. Leo [NSDI ‘24] E.g. N3IC [NSDI “22] E.g. Taurus [ASPLOS 22]

Why? Reduced data movement and response latency
[1] Leo: Online
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Challenge #2: Networks are getting more complex

 Are specialized in-network ML models alone good enough? No!

* More complex traffic patterns
< Small in—-network ML model
° High_dimensional (thousands of features) < Small in-network ML model (Continuously retrained)
* Long-context (millions of packets in a flow) o

o
o

* More diverse deployment environments
* Training & deployment environment can differ .
* Train-once-and-deploy for small models is insufficient
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In this work, we assume that all packet payload contents are unavailable, so payload-based approaches like DPI cannot bé used.



Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.
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Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.
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Large and versatile foundation models (accurate)

. Domain-specific foundation models for networking, security, etc.
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Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.

Are there any threat intelligence articles that reference the I0Cs that were found? /2 C W

= 3 steps completed g1 me the profiles of any threat actors referenced.

> Chose Threat

3 steps completed 19s

> Processed your

> Prepared your response 6s

Feb 14, 8:47 AM | 17.87s

There were no threat intelligence articles found that reference the IP address 185.82.217.3. However, it is
important to note that the IP address has a reputation score of 100, indicating that it is classified as
malicious and associated with known threat actors and campaigns. It is recommended to treat any
connections or activities involving this IP address with caution.
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Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.

Are there any threat intelligence articles that reference the I0Cs that were found?

v 3 steps completed

Show me the profiles of any threat actors referenced.

> Chose Threat
> () 3 steps completed 19s
> Processed your vcqo——. -

> Prepared your response 6s

Feb 14, 8:47 AM | 17.87s

at reference the IP address 185.82.217.3. However, it is
of 100, indicating that it is classified as
paigns. It is recommended to treat any
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Two approaches: Small and large models

#1: Small and specialized in-network models (fast)

#2: Large and versatile foundation models (accurate)

Question: Can we be both, fast and accurate?
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Our proposal: Online learning to the rescue

* Large and small models should work jointly online

Control ini ini <| i I
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(a) Offline Learning (b) Online Learning

Large models can guide small models via online learning to achieve both

speed and accuracy




Roadmap

* ML + Online traffic analysis in networking

* Two approaches: Small models (fast) v.s. Large models (accurate)

* How to achieve the benefits of both? Online Learning
* Three challenges and two insights to enable practical online learning

 Putting insights together: Caravan

e Limitations and future work
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Three challenges of using large models (e.g. FMs) online

High cost

Low speed

Poor control over output

18



Insight #1: Large models are good sources of labeling

* Large models can be used to generate labeled online data for training
small models (online learning).
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Labeling can be cheap, fast, and controllable online

* Why labeling in an online system?
* We start with the naive way of using a foundation model, e.g. GPT-4:

® Help me analyze which of the following network flows are

m malicious. [Data here]

Of course, I'd be happy to help! I'll do my best to provide a benign or malicious classification

based on the provided information and my knowledge.

Network flow 1:

- Decision: FTP-Patator

- Explanation: The dst port is 21 (FTP). The pattern is very similar to FTP-Patator from the
labeled data, with many SYN and ACK flags and a low average packet length.

20



Labeling can be cheap, fast, and controllable online

* Let’s adapt this chat to be a /labeling request:

L&)

Help me analyze which of the following network flows are
malicious. | only need a binary label for each flow. [Data here]

I POOR O
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Labeling can be cheap, fast, and controllable online

* Let’s adapt this chat to be a /labeling request:

L&)

Help me analyze which of the following network flows are
malicious. | only need a binary label for each flow. [Data here]

I POOR O
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Labeling can be cheap, fast, and controllable online

* Let’s adapt this chat to be a /labeling request:

Help me analyze which of the following network flows are
malicious. | only need a binary label for each flow. [Data here]

I POOR O
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Labeling can be cheap, fast, and controllable online

* Instead of repeatedly querying an LLM to label data, we ask it to
generate a (distilled) /abeling program that can be cached:

Help me analyze which of the following network flows are
malicious. Generate a Python program for this. [Data here]

def label_network_flow (flow):

Labels a network flow as benign (0) or malicious (1) based on certain heuristics.
This function is designed to be conservative and only labels a flow as malicious when it
is highly confident.

:param flow: A tuple containing features of the flow.
:return: An integer label, O for benign and 1 for malicious.




Labeling can be cheap, fast, and controllable online

* Instead of repeatedly querying an LLM to label data, we ask it to
generate a (distilled) /abeling program that can be cached:

Help me analyze which of the following network flows are
malicious. Generate a Python program for this. [Data here]

def label_network_flow (flow):

Labels a network flow as benign (0) or malicious (1) based on certain heuristics.
This function is designed to be conservative an
is highly confident.

:param flow: A tuple containing features of the' ™
:return: An integer label, O for benign and 1 for




Insight #1: Large models are good sources of labeling

* Data labeling & online learning do not need to happen in real-time.
* Further acceleration through large-batch inference, parallelization, etc.
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Large models can be good sources of labeling in online scenarios



Example: Adapting GPT-4 as a labeling source

* We adapted GPT-4 for data labeling in the intrusion detection use

case.

Labeling request prompts

Data Labeling Prompt (P2): Please give me a label for each
of these unlabeled flows. No explanation or analysis needed,
label only; one flow on each line. Format for each line: (flow
number) label. [Flows and their features gc here].

N\ Parsed labels

Instruction following prompts | Ap
In-context learning examples 4.’”‘ Labeling response

conditions = [

S SN
T

Off-the-shelf foundation models can be adapted to be labeling sources




Generated labels from GPT-4 for online learning

* We use generated labels from GPT-4, as well as ground truth labels
(from dataset publishers), for online learning.

* Result: The accuracy gains from online learning are comparable.
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Caveat: Accurate labels are essential

* Foundation models can produce noisy labels (partially incorrect).
* And highly inaccurate generated labels can backfire.

* If ground truth labels are available online in the network, use them!

1'_" _ Retraining with Generated Labels
L o Retraining with Ground Truth Labels
=

(3+] -

5 0.2

>

O

E 00_ —

S

O

&

< -0.2

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Labeling Accuracy

29



Caveat: Accurate labels are essential

* We discuss potential solutions to this problem in the OSDI paper.

e Offline

* Benchmarking the performance of foundation models on domain-specific tasks

Category Math
( Math - #models: 127 (93%) #votes: 228,144 (13%)
Rankx Arena g g
4+ Delta + Model A . 95% CI + Votes + Organization

(uB) Score

i1t 5 Claude. 3.5.Sonnet 1274 +7/-8 7138 Anthropic

11t 1 Gemini-1.5-Pro-Exp-0827 1271 +9/-8 3431 Google
ChatGPT-40-1latest (2024

1 (¢} 1269 +9/-10 4029 OpenAl
08-08)

1t 1 Gemini-1.5-Pro-Exp-0801 1258 +9/-8 3723 Google

21 3 GPT-40:2024-05-13 1257 +7/-6 10817 OpenAI

References
2 0 Grok-2-08:13 1252 +14/-13 1258 XAI

+ License

Proprietary

Proprietary

Proprietary

Proprietary
Proprietary

Proprietary

~ Knowledge

Cutoff
2024/4

2023/11

2023/10

2023/11
2023/10

2024/3

[ [ VoYaVal alal Fal Fal |doNa¥al VoNNId /
[1] Judging LLIV-05-0-) bkchigGumsieednldmieeieiimiiisilmiembieieilsisioms R

[2] Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language Models (arXiv)
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Caveat: Accurate labels are essential

* We discuss potential solutions to this problem in the OSDI paper.
e Offline

* Benchmarking performance of foundation models on domain-specific tasks

Cybench

the

Q GitHub ™ Blog 6 Leaderboard W Ethics

A benchmark for evaluating the cybersecurity capabilities

and risks of language models.

Cybench includes 40 professional-level Capture the Flag (CTF) tasks from 4 distinct CTF
competitions, chosen to be recent, meaningful, and spanning a wide range of difficulties.
We add subtasks, which break down a task into intermediary steps for more gradated
evaluation, to 17 of the 40 tasks.

References
[1] Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena (NeurlPS ’23)
[2] Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risk of Language Models (arXiv)
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Caveat: Accurate labels are essential

* We discuss potential solutions to this problem in the OSDI paper.
* Offline
* Benchmarking the performance of foundation models on domain-specific tasks

* Online
* Validating outputs from a foundation model

Shiocing BEM S onneence Thiouon LLM Toolkit: Validation is all you
Logprobs
need
g
VETRe) e o

In the realm of Al-driven responses, understanding the confidence level of
generated text is crucial for evaluating model performance and enhancing

user trust. The use of log probabilities (or logprobs) serves as a beacon of

insight into the decision-making process of language models.




Insight #2: Online learning can be triggered sparsely

* Generated labels from large models can be used to approximate the
online accuracy of small models (which we call accuracy proxy).
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Insight #2: Online learning can be triggered sparsely

;

| have never seen these
data patterns before!

Sparse online learning via accuracy proxy avoids excessive retraining




Roadmap

* ML + Online traffic analysis in networking

* Two approaches: Small models (fast) v.s. Large models (accurate)

* How to achieve the benefits of both? Online Learning
* Three challenges and two insights to enable practical online learning

* Putting insights together: Caravan

e Limitations and future work
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Putting them together (Caravan)

Sampled data (features + small model predictions)

e Caravan: A system for practical online Streaming DB
learning of in-network ML models
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Model
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Putting them together (Caravan)

Sampled data (features + small model predictions)

* Online data is collected and sampled. Streaming DB
» Samples are stored in a streaming DB.




Putting them together (Caravan)

* Labeling agent

* Retrieves batched data from streaming DB “ *i
Large DNNs Foundation Models

* Generates labels for these data via user- ; Labels § !
defined large models

Labeling
Agent

Conflict Resolution

i Generated Labels




Putting them together (Caravan)

* Model validation
» Computes accuracy proxy
* Decides if online learning is necessary

Retraining Trigger —» R.(acc.>» Threshold)

Accuracy Proxy — F;(Pred., Gen. Labels)

Model
Validation

! i Generated Labels




Putting them together (Caravan)

* Model retraining
* Forms a retraining dataset
* Retrains the model
* Sends updated weights to the small model

Class-Balanced Dataset

Retraining & Update

Retraining

‘1’ Weights



Putting them together (Caravan)

Sampled data (features + small model predictions)

e Caravan: A system for practical online Streaming DB
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Implementation: Three-piece prototype

Server: ML Inf. InfluxDB

Intel Xeon Gold
6248x2 (80c) ONOS | ReglO

1

XDP

i ...................... 10 GbE
Stratum OS \j
ratum j

Tofino:
Wedge — R
100BF-32X

$—>

....................................................... 100 GbE
FPGA:

Xilinx Alveo U250
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Implementation: Three-piece prototype

* A Tofino switch for packet parsing and deparsing
* We send and receive packets with MoonGen (IMC ‘15).

Tofino:
Wedge
100BF-32X
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Implementation: Three-piece prototype

* An FPGA for running the in-network ML model

* We program the architecture of the ML model with the Spatial language
(PLDI “18), a Scala-based higher-level hardware description language.

...................................................... 100 GbE

FPGA:
Xilinx Alveo U250

44
Thanks to Spatial, no Verilog-level programming needed. However, FPGA simulation is still the most time-consuming part of the implementation...



Implementation: Three-piece prototype

* A compute server for the Caravan software

* In the end-to-end experiment, we use CPU for online model training as the
sampled training dataset size is relatively small.

* For simulations and micro-benchmarking (details in the paper), we use GPU.

Server:
Intel Xeon Gold
6248x2 (80c)
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Implementation: Three-piece prototype

A Tofino switch for packet parsing/deparsing
* An FPGA for running in-network ML model
* A server for the Caravan software

Server: ML Inf. InfluxDB
Intel Xeon Gold T
6248x2 (80c) ONOS | ReglO | XDP
i ...................... 10 GbE
Stratum OS j :ﬁ

Tofino: A
Wedge — R i

100BF-32X

....................................................... 100 GbE
FPGA:

Xilinx Alveo U250
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Evaluation setup

* 2 applications and 3 datasets
* Intrusion detection (security)
* |oT traffic classification (performance)

e 2 evaluation metrics

* ML model accuracy: F1 score
 System cost of online learning: CPU/GPU time, memory usage, FPGA usage

47



Example: End-to end intrusion detection

* A dataset with 35 million packets
7 different types of attacks
* A 7-layer DNN that runs at line-rate in FPGA

* Classify each packet as malicious or benign

 Packet rate: 0.5 million packets/sec
* Run inference + compute accuracy on every packet

* Sample rate for the control plane: 0.1%
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We start with the small in-network model

New attack! ~— Small model

&
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Time since streaming (seconds)
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What if the large model guides the small model
(via online learning)?

~ Small model
-+ Small model + Large model + Continuous retraining

A Large model fails! A A A

=
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o
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Time since streaming (seconds)
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What if we introduce selective retraining via
accuracy proxy (Caravan)?

~ Small model
-+ Small model + Large model + Continuous retraining
-+ Small model + Large model + Smart retraining (Caravan)

=
o
o

o
~
o1

Accuracy (F1)
o O
a3

o
o
S

0 20 40 60
Time since streaming (seconds)
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What if we introduce selective retraining via
accuracy proxy (Caravan)?

~ Small model
- Small model + Large model + Continuous retraining
-+ Small model + Large model + Smart retraining (Caravan)

=
o
=}

o
\l
&

Accuracy (F1)
o o
SIS

o
o
S

Caravan keeps in-network ML models up-to-date with changing traffic dynamics




Caravan saves backend computation from
excessive retraining

w
o
o

800 Caravan
Retraining with Generated Labels

600 [l Retraining with Ground Truth Labels
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Caravan reduces backend CPU usage by an average of 56.23%
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Roadmap

* ML + Online traffic analysis in networking

* Two approaches: Small models (fast) v.s. Large models (accurate)

* How to achieve the benefits of both? Online Learning
* Three challenges and two insights to enable practical online learning

 Putting insights together: Caravan

e Limitations and future work
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Scope and limitations

When to use Caravan

v' ML inference on streaming data in real-time (e.g. edge, near-data)
v' Complex and dynamic data patterns (e.g. data drifts, concept drifts)

v No ground truth labels available (e.g. no human intervention)

When not to use Caravan

X ML inference on offline data (e.g. analytics of batch or historical data)
X Simple and static data patterns (e.g. small local area networks)

X Ground truth labels readily available (e.g. human-in-the-loop)
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More details in our OSDI paper

User interface of Caravan

Effectiveness of weak supervision
labels

GPT-4 labeling prompts
Example of GPT-4 generations
System cost and latency analysis
Artifact (software + hardware)

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
G| | @erems| | @i

CARAVAN: Practical Online Learning of In-Network ML Models with Labeling Agents
Qizheng Zhang, Ali Imran’, Enkeleda Bardhi*, Tushar Swamy, Nathan Zhang,
Muhammad Shahbaz™, Kunle Olukotun
Stanford University *Purdue University *Sapienza University of Rome *University of Michigan
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ing environments. However, upon deployment, these models Once validation

struggle to cope with fluctuating traffic patterns and network Data
conditions and, therefore, must be validated and updated fre- Plane [ Inference ] [ Inference ]
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D Paper prehen S A pre Figure 1: Comparison of in-network model learning. (a)

Abstract

al online learning
system for in-network ML models. We tackle two primary

artifact

challenges in facilitating online learning for networking: (a)
the automatic labeling of evolving traffic and (b) the efficient
monitoring and detection of model performance degradation
to trigger retraining. CARAVAN repurposes existing systems
(e.g., heuristics, access control lists, and foundation models)—
not directly suitable for such dynamic environments—into
high-quality labeling sources for generating labeled data for
online learning. CARAVAN also introduces a new metric, ac-

Offline learning: trained and deployed once; (b) Online
learning: trained and updated over time—requires itera-
tive sampling, labeling, and validation.

Unlike conventional approaches (e.g., hand-crafted heuris-
tics and static rulesets), ML models are better at revealing
hidden patterns and characteristics in vast amounts of high-
dimensional data—such as network traffic 35, 54,71, 104,
111,116, 117]. However, most efforts on replacing traditional

L Bausict: 1 aco y 1 liceo) sich
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Conclusion 5,
paper

* Two approaches for ML-based online traffic analysis: Small models
(fast) v.s. Large models (accurate)

* How to achieve the benefits of both? Online Learning
* Three challenges of large models online: High cost, low speed, poor control
* Two insights: Large models as labeling sources, and sparse retraining
e Putting insights together: Caravan

* Beyond networking
 Self-improving Al systems
* ML systems in dynamic environments
* Integration of LLMs and autonomous systems
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Conclusion

» We are working on an open-source library for making Caravan (and
generative data labeling) easy to use.

* | am open to questions, chats and collaborations.
e Contact: gizhengz@stanford.edu
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