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Machine learning (ML) in online traffic analysis

(1) Incoming packets (3) ML inference (4) Drop or keep packets
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• Motivating use case: Intrusion detection in a network

(2) Feature extraction

timestamp

packet size



Why ML-based online traffic analysis?

• Diverse use cases
• Enhancing infrastructure security
• Improving application performance

• Growing incentive for adoption
• Complexity of network traffic patterns
• Encrypted network protocols
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Challenge #1: Networks are getting faster

• Lower response latency in the network
• Datacenter RTT: 100µs (2008) to 5µs (2023)

• More data in the network
• Ethernet line-rate: 10 Gbps (2002) to 800 Gbps (2024)
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• Strict latency & throughput requirements
• A need for small-batch or per-packet inference



Small and specialized in-network models (fast)

• In-network ML in data plane devices for real-time, per-packet inference
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ASIC

Programmable switches
E.g. Leo [NSDI ‘24]

SmartNICs
E.g. N3IC [NSDI ‘22]

Hardware ASICs
E.g. Taurus [ASPLOS ‘22]

Why? Reduced data movement and response latency



Challenge #2: Networks are getting more complex

• More complex traffic patterns
• High-dimensional (thousands of features)
• Long-context (millions of packets in a flow)

• More diverse deployment environments
• Training & deployment environment can differ
• Train-once-and-deploy for small models is insufficient

• Are specialized in-network ML models alone good enough? No!
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Large and versatile foundation models (accurate)

• Domain-specific foundation models for networking, security, etc.
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NetLLM [SIGCOMM ‘24]
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NetLLM [SIGCOMM ‘24]
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Why? Better in-depth analysis and generalization



Two approaches: Small and large models

#1: Small and specialized in-network models (fast)

#2: Large and versatile foundation models (accurate)

Question: Can we be both, fast and accurate?
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Our proposal: Online learning to the rescue

• Large and small models should work jointly online

Large models can guide small models via online learning to achieve both 
speed and accuracy
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Insight #1: Large models are good sources of labeling

• Large models can be used to generate labeled online data for training 
small models (online learning).

(1) Incoming packets (2) Labeled packets (3) Training data for 
small models
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Insight #1: Large models are good sources of labeling

Large models can be good sources of labeling in online scenarios

• Data labeling & online learning do not need to happen in real-time.
• Further acceleration through large-batch inference, parallelization, etc.

(4) Deploy

(5) In-network Inference

400-800 Gbps
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Example: Adapting GPT-4 as a labeling source

• We adapted GPT-4 for data labeling in the intrusion detection use 
case.
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Off-the-shelf foundation models can be adapted to be labeling sources

Instruction following prompts

Labeling request prompts
In-context learning examples Labeling response Parsed labels

def label_flow_with_rule_cache(flow): 

    """ 

        Labels a network flow as benign (0) or malicious (1) based on certain heuristics. 

        This function is designed to be conservative and only labels a flow as malicious when it is highly confident. 

         

        :param flow: A tuple containing features of the flow.  

        :return: An integer label, 0 for benign and 1 for malicious.   

    """ 

     

    # Unpack the flow features 

    dur, proto, sbytes, dbytes, sttl, dttl, sload, dload, spkts, dpkts, smean, dmean, sinpkt, dinpkt, tcprtt, synack,   

    ackdat, ct_src_ltm, ct_dst_ltm, ct_dst_src_ltm = flow 

     

    # Define thresholds and conditions for a flow to be considered malicious 

    # These thresholds are derived from cybersecurity expertise and unlabeled data provided     

    conditions = [ 

        # If the source to destination time to live value is maximum (255) and the destination to source packet count  

        # is 0, it is likely to be a scan or a DoS attack. 

        sttl == 254 and dpkts == 0, 

         

        # If the number of connections to the same source address in the last 100 connections is high (above 30), 

        # it might indicate a scanning activity or a distributed attack. 

        ct_src_ltm > 30, 

         

        # If the number of connections to the same destination address in the last 100 connections is high (above 30), 

        # it might indicate a scanning activity or a distributed attack. 

        ct_dst_ltm > 30, 

         

        # If the number of connections to the same source and destination address in the last 100 connections is high  

        # (above 30), it might indicate a scanning activity or a distributed attack. 

        ct_dst_src_ltm > 30, 

         

        # If the TCP connection setup round-trip time, the time between the SYN and the SYN_ACK packets, 

        # and the time between the SYN_ACK and the ACK packets are all 0, it might indicate a SYN flood attack. 

        tcprtt == 0.0 and synack == 0.0 and ackdat == 0.0, 

    ] 

     

    # If any of the malicious conditions are met, label the flow as malicious 

    if any(conditions): 

        return 1 

         

    # Otherwise, label the flow as benign 

    return 0 
 

API



Generated labels from GPT-4 for online learning

• We use generated labels from GPT-4, as well as ground truth labels, 
for online learning.
• Result: The accuracy gains from online learning are similar.
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Insight #2: Online learning can be triggered sparsely

• Generated labels from large models can be used to approximate the 
online accuracy of small models (which we call accuracy proxy).

Accuracy proxy = 100%
No need for retraining!
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Insight #2: Online learning can be triggered sparsely

Sparse online learning via accuracy proxy avoids excessive retraining

Accuracy proxy = 50%
Trigger online learning!

I have never seen these 
data patterns before!
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Putting them together (Caravan)
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• Caravan: A system for practical online 
learning of in-network ML models
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Putting them together (Caravan)

• Online data is collected and sampled. 
• Samples are stored in a streaming DB.
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•  Labeling agent
• Retrieves batched data from streaming DB
• Generates labels for these data via user-

defined large models



Putting them together (Caravan)
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• Model validation
• Computes accuracy proxy
• Decides if online learning is necessary
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Putting them together (Caravan)
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• Model retraining
• Forms a retraining dataset
• Retrains the model
• Sends updated weights to the small model
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Putting them together (Caravan)
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• In summary, three collaborating pieces!



Implementation
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• Prototype with three major pieces
• A Tofino switch for packet parsing/deparsing
• An FPGA for running in-network ML model
• A server for the Caravan software
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Implementation
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Evaluation setup

• 2 applications and 3 datasets
• Intrusion detection (security) 
• IoT traffic classification (performance)

• 2 evaluation metrics
• ML model accuracy: F1 score
• System cost of online learning: CPU/GPU and memory usage
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Example: End-to end intrusion detection

• A dataset with 35 million packets
• 7 different types of attacks
• A 7-layer DNN that runs at line-rate in FPGA
• Classify each packet as malicious or benign
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• Packet rate: 0.5 million packets/sec
• Run inference + compute accuracy on every packet
• Sample rate for the control plane: 0.1%



We start with the small in-network model
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What if the large model guides the small model 
(via online learning)?
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What if we introduce selective retraining via 
accuracy proxy (Caravan)?
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Caravan keeps in-network ML models up-to-date with changing traffic dynamics



Caravan saves backend computation from 
excessive retraining 
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Scope and limitations
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When to use Caravan

When not to use Caravan

ü ML inference on streaming data in real-time (e.g. edge, near-data)
ü Complex and dynamic data patterns (e.g. data drifts, concept drifts)
ü No ground truth labels available (e.g. no human intervention)

 ML inference on offline data (e.g. analytics of batch or historical data)
 Simple and static data patterns (e.g. small local area networks)
 Ground truth labels readily available (e.g. human-in-the-loop)



More details in our paper

• User interface of Caravan
• Effectiveness of weak supervision 

labels
• GPT-4 labeling prompts
• Example of GPT-4 generations
• System cost and latency analysis
• Artifact (software + hardware)
…

paper code
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Conclusion

• Large models, e.g. GPT-4, can guide small in-network ML models via 
online learning since they can be good sources of labeling
• Sparse online learning via accuracy proxy saves system resources 

from excessive retraining
• We present Caravan for practical online learning for in-network ML
• Caravan keeps in-network ML models up-to-date with changing traffic 

dynamics
• Caravan reduces backend CPU usage by an average of 56.23% from excessive 

retraining

• Questions? Email me: qizhengz@stanford.edu

paper code
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