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Machine learning (ML) in online traffic analysis

* Motivating use case: Intrusion detection in a network
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Why ML-based online traffic analysis?

e Diverse use cases

* Enhancing infrastructure security
* Improving application performance

* Growing incentive for adoption

* Complexity of network traffic patterns

* Encrypted network protocols
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Challenge #1: Networks are getting faster

* More data in the network
* Ethernet line-rate: 10 Gbps (2002) to 800 Gbps (2024)

* Lower response latency in the network T
» Datacenter RTT: 100us (2008) to 5us (2023) soocops
e Strict latency & throughput requirements —-
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* A need for small-batch or per-packet inference
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Small and specialized in-network models (fast)

* In-network ML in data plane devices for real-time, per-packet inference
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Programmable switches SmartNICs Hardware ASICs
E.g. Leo [NSDI ‘24] E.g. N3IC [NSDI “22] E.g. Taurus [ASPLOS 22]

Why? Reduced data movement and response latency



Challenge #2: Networks are getting more complex

* Are specialized in-network ML models alone good enough? No!

* More complex traffic patterns
® Small in-network ML model
° High_dimensional (thousands Of featu res) ® Small in-network ML model (Continuously retrained)
* Long-context (millions of packets in a flow) o

)

* More diverse deployment environments |
* Training & deployment environment can differ
* Train-once-and-deploy for small models is insufficient
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Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.



Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.
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Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.

netFound: Foundation Model for Network Security

NetLL} 'tworking
Satyandra Guthula Navya Battula Roman Beltiukov
UC Santa Barbara UC Santa Barbara UC Santa Barbara
Duo Wu! satyandra@ucsb.edu navyabiol2 @ gmail.com rbeltiukov@ucsb.edu ~ Fangxin Wang 1
"The C Wenbo Guo Arpit Gupta ity of Chicago
Purdue University UC Santa Barbara

henrygwb@purdue.edu arpitgupta@ucsb.edu



Large and versatile foundation models (accurate)

* Domain-specific foundation models for networking, security, etc.

Why? Better in-depth analysis and generalization



Two approaches: Small and large models

#1: Small and specialized in-network models (fast)

#2: Large and versatile foundation models (accurate)

Question: Can we be both, fast and accurate?
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Our proposal: Online learning to the rescue

* Large and small models should work jointly online
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Large models can guide small models via online learning to achieve both

speed and accuracy




Insight #1: Large models are good sources of labeling

* Large models can be used to generate labeled online data for training
small models (online learning).
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Insight #1: Large models are good sources of labeling

* Data labeling & online learning do not need to happen in real-time.
* Further acceleration through large-batch inference, parallelization, etc.
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Large models can be good sources of labeling in online scenarios



Example: Adapting GPT-4 as a labeling source

* We adapted GPT-4 for data labeling in the intrusion detection use
case.

Instruction following prompts | ap
In-context learning examples 4.’”‘

Labeling response = Parsed labels
Labeling request prompts
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Data Labeling Prompt (P2): Please give me a label for each
of these unlabeled flows. No explanation or analysis needed,
label only; one flow on each line. Format for each line: (flow
number) label. [Flows and their features go here].

Off-the-shelf foundation models can be adapted to be labeling sources




Generated labels from GPT-4 for online learning

* We use generated labels from GPT-4, as well as ground truth labels,
for online learning.

* Result: The accuracy gains from online learning are similar.
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Insight #2: Online learning can be triggered sparsely

* Generated labels from large models can be used to approximate the
online accuracy of small models (which we call accuracy proxy).
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Insight #2: Online learning can be triggered sparsely
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Sparse online learning via accuracy proxy avoids excessive retraining




Putting them together (Caravan)

Sampled data (features + small model predictions)

e Caravan: A system for practical online Streaming DB
learning of in-network ML models
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Putting them together (Caravan)

Sampled data (features + small model predictions)

* Online data is collected and sampled. Streaming DB
» Samples are stored in a streaming DB.




Putting them together (Caravan)

* Labeling agent _

* Retrieves batched data from streaming DB ﬁ *ﬁ
Large DNNs Foundation Models

* Generates labels for these data via user- ] o !
defined |arge models Conflict Resolution

Labeling
Agent

i Generated Labels




Putting them together (Caravan)

* Model validation
* Computes accuracy proxy
* Decides if online learning is necessary

Retraining Trigger —» R;(acc.> Threshold)

Accuracy Proxy — F;(Pred., Gen. Labels)

Model
Validation

i Generated Labels




Putting them together (Caravan)

* Model retraining
* Forms a retraining dataset
* Retrains the model
* Sends updated weights to the small model
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Putting them together (Caravan)

Sampled data (features + small model predictions)

* In summary, three collaborating pieces! Streaming DB
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Implementation

* Prototype with three major pieces
* A Tofino switch for packet parsing/deparsing
* An FPGA for running in-network ML model
* A server for the Caravan software

Tofino:
Wedge —
100BF-32X
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Implementation

* Prototype with three major pieces
* A Tofino switch for packet parsing/deparsing
* An FPGA for running in-network ML model
* A server for the Caravan software

...................................................... 100 GbE

FPGA:
Xilinx Alveo U250



Implementation

* Prototype with three major pieces
* A Tofino switch for packet parsing/deparsing
* An FPGA for running in-network ML model
* A server for the Caravan software

Server:
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Implementation

* Prototype with three major pieces
» A Tofino switch for packet parsing/deparsing
* An FPGA for running in-network ML model
* A server for the Caravan software

Server: ML Inf. InfluxDB

Intel Xeon Gold T
6248x2 (80c) ONOS | ReglO | XDP
J/ ...................... 10 GbE
Stratum OS _l %
Tofino: )
Wedge — R e
100BF-32X

........................................................ 100 GbE
FPGA:

Xilinx Alveo U250




Evaluation setup

* 2 applications and 3 datasets
* Intrusion detection (security)
* |oT traffic classification (performance)

2 evaluation metrics
* ML model accuracy: F1 score
 System cost of online learning: CPU/GPU and memory usage

28



Example: End-to end intrusion detection

* A dataset with 35 million packets
« 7 different types of attacks
* A 7-layer DNN that runs at line-rate in FPGA

* Classify each packet as malicious or benign

* Packet rate: 0.5 million packets/sec
* Run inference + compute accuracy on every packet
* Sample rate for the control plane: 0.1%

29



We start with the small in-network model

New attack! - Small model
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What if the large model guides the small model
(via online learning)?

- Small model
- Small model + Large model + Continuous retraining

Large model fails!
A A A A
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What if we introduce selective retraining via
accuracy proxy (Caravan)?

- Small model
-4 Small model + Large model + Continuous retraining
-+ Small model + Large model + Smart retraining (Caravan)
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Caravan keeps in-network ML models up-to-date with changing traffic dynamics




Caravan saves backend computation from
excessive retraining

800 Caravan
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Caravan reduces backend CPU usage by an average of 56.23%



Scope and limitations

When to use Caravan

v' ML inference on streaming data in real-time (e.g. edge, near-data)
v' Complex and dynamic data patterns (e.g. data drifts, concept drifts)

v No ground truth labels available (e.g. no human intervention)

When not to use Caravan

X ML inference on offline data (e.g. analytics of batch or historical data)
X Simple and static data patterns (e.g. small local area networks)

X Ground truth labels readily available (e.g. human-in-the-loop)
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More details in our paper

e User interface of Caravan

* Effectiveness of weak supervision
labels

* GPT-4 labeling prompts

* Example of GPT-4 generations

 System cost and latency analysis

* Artifact (software + hardware)
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Abstract

Recent work on in-network machine learning (ML) antic-
ipates offline models to operate well in modern network-
ing environments. However, upon deployment, these models
struggle to cope with fluctuating traffic patterns and network
conditions and, therefore, must be validated and updated fre-
quently in an online fashion.

This paper presents CARAVAN, a practical online learning
system for in-network ML models. We tackle two primary
challenges in facilitating online learning for networking: (a)
the automatic labeling of evolving traffic and (b) the efficient
monitoring and detection of model performance degradation
to trigger retraining. CARAVAN repurposes existing systems
(e.g., heuristics, access control lists, and foundation models)—
not directly suitable for such dynamic environments—into
high-quality labeling sources for generating labeled data for
online learning. CARAVAN also introduces a new metric, ac-
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(a) Offline Learning (b) Online Learning
Figure 1: Comparison of in-network model learning. (a)
Offline learning: trained and deployed once; (b) Online
learning: trained and updated over time—requires itera-
tive sampling, labeling, and validation.

Unlike conventional approaches (e.g., hand-crafted heuris-
tics and static rulesets), ML models are better at revealing
hidden patterns and characteristics in vast amounts of high-
dimensional data—such as network traffic [35, 54,71, 104,
111,116, 117]. However, most efforts on replacing traditional

L heusictios and accece conteal licte) suith
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Conclusion

* Large models, e.g. GPT-4, can guide small in-network ML models via
online learning since they can be good sources of labeling

* Sparse online learning via accuracy proxy saves system resources
from excessive retraining

* We present Caravan for practical online learning for in-network ML

e Caravan keeps in-network ML models up-to-date with changing traffic
dynamics

e Caravan reduces backend CPU usage by an average of 56.23% from excessive
retraining

* Questions? Email me: qizhengz@stanford.edu
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