
Caravan: Practical Online Learning of In-Network
ML Models with Labeling Agents

Qizheng Zhang1, Ali Imran2, Enkeleda Bardhi3, Tushar Swamy1, Nathan Zhang1,
Muhammad Shahbaz2,4, Kunle Olukotun1

1 2 3 4

Machine learning (ML) in online traffic analysis

(1) Incoming packets (3) ML inference (4) Drop or keep packets

1

• Motivating use case: Intrusion detection in a network

(2) Feature extraction

timestamp

packet size

Why ML-based online traffic analysis?

• Diverse use cases
• Enhancing infrastructure security
• Improving application performance

• Growing incentive for adoption
• Complexity of network traffic patterns
• Encrypted network protocols

2

Challenge #1: Networks are getting faster

• Lower response latency in the network
• Datacenter RTT: 100µs (2008) to 5µs (2023)

• More data in the network
• Ethernet line-rate: 10 Gbps (2002) to 800 Gbps (2024)

3

• Strict latency & throughput requirements
• A need for small-batch or per-packet inference

Small and specialized in-network models (fast)

• In-network ML in data plane devices for real-time, per-packet inference

4

ASIC

Programmable switches
E.g. Leo [NSDI ‘24]

SmartNICs
E.g. N3IC [NSDI ‘22]

Hardware ASICs
E.g. Taurus [ASPLOS ‘22]

Why? Reduced data movement and response latency

Challenge #2: Networks are getting more complex

• More complex traffic patterns
• High-dimensional (thousands of features)
• Long-context (millions of packets in a flow)

• More diverse deployment environments
• Training & deployment environment can differ
• Train-once-and-deploy for small models is insufficient

• Are specialized in-network ML models alone good enough? No!

5

●

● ● ● ● ●

●

●

● ● ● ●

New Data Class

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6
Time since start (# windows)

Ac
cu

ra
cy

 (F
1)

●

●

Small in−network ML model
Small in−network ML model (Continuously retrained)

Large and versatile foundation models (accurate)

• Domain-specific foundation models for networking, security, etc.

6

NetLLM [SIGCOMM ‘24]

Large and versatile foundation models (accurate)

• Domain-specific foundation models for networking, security, etc.

7

NetLLM [SIGCOMM ‘24]

Large and versatile foundation models (accurate)

• Domain-specific foundation models for networking, security, etc.

8

NetLLM [SIGCOMM ‘24]

Large and versatile foundation models (accurate)

• Domain-specific foundation models for networking, security, etc.

9

Why? Better in-depth analysis and generalization

Two approaches: Small and large models

#1: Small and specialized in-network models (fast)

#2: Large and versatile foundation models (accurate)

Question: Can we be both, fast and accurate?
10

Our proposal: Online learning to the rescue

• Large and small models should work jointly online

Large models can guide small models via online learning to achieve both
speed and accuracy

11

InferenceData
Plane

TrainingControl
Plane

Model

Installed

Once

(a) Offline Learning (b) Online Learning

Labeling(Re)Training

Weight

Updates
Sampling &
Validation

Inference

Insight #1: Large models are good sources of labeling

• Large models can be used to generate labeled online data for training
small models (online learning).

(1) Incoming packets (2) Labeled packets (3) Training data for
small models

12

Insight #1: Large models are good sources of labeling

Large models can be good sources of labeling in online scenarios

• Data labeling & online learning do not need to happen in real-time.
• Further acceleration through large-batch inference, parallelization, etc.

(4) Deploy

(5) In-network Inference

400-800 Gbps

13

Example: Adapting GPT-4 as a labeling source

• We adapted GPT-4 for data labeling in the intrusion detection use
case.

14
Off-the-shelf foundation models can be adapted to be labeling sources

Instruction following prompts

Labeling request prompts
In-context learning examples Labeling response Parsed labels

def label_flow_with_rule_cache(flow):

 """

 Labels a network flow as benign (0) or malicious (1) based on certain heuristics.

 This function is designed to be conservative and only labels a flow as malicious when it is highly confident.

 :param flow: A tuple containing features of the flow.

 :return: An integer label, 0 for benign and 1 for malicious.

 """

 # Unpack the flow features

 dur, proto, sbytes, dbytes, sttl, dttl, sload, dload, spkts, dpkts, smean, dmean, sinpkt, dinpkt, tcprtt, synack,

 ackdat, ct_src_ltm, ct_dst_ltm, ct_dst_src_ltm = flow

 # Define thresholds and conditions for a flow to be considered malicious

 # These thresholds are derived from cybersecurity expertise and unlabeled data provided

 conditions = [

 # If the source to destination time to live value is maximum (255) and the destination to source packet count

 # is 0, it is likely to be a scan or a DoS attack.

 sttl == 254 and dpkts == 0,

 # If the number of connections to the same source address in the last 100 connections is high (above 30),

 # it might indicate a scanning activity or a distributed attack.

 ct_src_ltm > 30,

 # If the number of connections to the same destination address in the last 100 connections is high (above 30),

 # it might indicate a scanning activity or a distributed attack.

 ct_dst_ltm > 30,

 # If the number of connections to the same source and destination address in the last 100 connections is high

 # (above 30), it might indicate a scanning activity or a distributed attack.

 ct_dst_src_ltm > 30,

 # If the TCP connection setup round-trip time, the time between the SYN and the SYN_ACK packets,

 # and the time between the SYN_ACK and the ACK packets are all 0, it might indicate a SYN flood attack.

 tcprtt == 0.0 and synack == 0.0 and ackdat == 0.0,

]

 # If any of the malicious conditions are met, label the flow as malicious

 if any(conditions):

 return 1

 # Otherwise, label the flow as benign

 return 0

API

Generated labels from GPT-4 for online learning

• We use generated labels from GPT-4, as well as ground truth labels,
for online learning.
• Result: The accuracy gains from online learning are similar.

15

0.0

0.2

0.4

0.6

50 100 200 500
Number of training data each time (# Packets)

Ac
cu

ra
cy

 G
ai

n
(F

1+
)

Online Learning with Ground Truth Labels
Online Learning with Generated Labels (LLM)

Insight #2: Online learning can be triggered sparsely

• Generated labels from large models can be used to approximate the
online accuracy of small models (which we call accuracy proxy).

Accuracy proxy = 100%
No need for retraining!

16

Insight #2: Online learning can be triggered sparsely

Sparse online learning via accuracy proxy avoids excessive retraining

Accuracy proxy = 50%
Trigger online learning!

I have never seen these
data patterns before!

17

Putting them together (Caravan)

18

Streaming DB

Foundation Models …

Conflict Resolution

La
be

lin
g

A
ge
nt

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
Re

tr
ai
ni
ng

Labels

Generated Labels

Generated Labels

Weights

Large DNNs

Sampled data (features + small model predictions)

• Caravan: A system for practical online
learning of in-network ML models

Streaming DB

Foundation Models …

Conflict Resolution

La
be

lin
g

A
ge
nt

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
Re

tr
ai
ni
ng

Labels

Generated Labels

Generated Labels

Weights

Large DNNs

Sampled data (features + small model predictions)

Putting them together (Caravan)

• Online data is collected and sampled.
• Samples are stored in a streaming DB.

19

Streaming DB

Foundation Models …

Conflict Resolution

La
be

lin
g

A
ge
nt

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
Re

tr
ai
ni
ng

Labels

Generated Labels

Generated Labels

Weights

Large DNNs

Sampled data (features + small model predictions)

Putting them together (Caravan)

20

• Labeling agent
• Retrieves batched data from streaming DB
• Generates labels for these data via user-

defined large models

Putting them together (Caravan)

21

• Model validation
• Computes accuracy proxy
• Decides if online learning is necessary

Streaming DB

Foundation Models …

Conflict Resolution

La
be

lin
g

A
ge
nt

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
Re

tr
ai
ni
ng

Labels

Generated Labels

Generated Labels

Weights

Large DNNs

Sampled data (features + small model predictions)

Putting them together (Caravan)

22

• Model retraining
• Forms a retraining dataset
• Retrains the model
• Sends updated weights to the small model

Streaming DB

Foundation Models …

Conflict Resolution

La
be

lin
g

A
ge
nt

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
Re

tr
ai
ni
ng

Labels

Generated Labels

Generated Labels

Weights

Large DNNs

Sampled data (features + small model predictions)

Putting them together (Caravan)

23

Streaming DB

Foundation Models …

Conflict Resolution

La
be

lin
g

A
ge
nt

M
od

el
Va

lid
at
io
n

Accuracy Proxy → "!($%&'. , *&+. ,-.&/0)

Retraining Trigger → 2"(-33.≫ 5ℎ%&0ℎ7/')

Class-Balanced Dataset

Retraining & UpdateM
od

el
Re

tr
ai
ni
ng

Labels

Generated Labels

Generated Labels

Weights

Large DNNs

Sampled data (features + small model predictions)

• In summary, three collaborating pieces!

Implementation

24

• Prototype with three major pieces
• A Tofino switch for packet parsing/deparsing
• An FPGA for running in-network ML model
• A server for the Caravan software

Implementation

25

• Prototype with three major pieces
• A Tofino switch for packet parsing/deparsing
• An FPGA for running in-network ML model
• A server for the Caravan software

Implementation

26

• Prototype with three major pieces
• A Tofino switch for packet parsing/deparsing
• An FPGA for running in-network ML model
• A server for the Caravan software

Implementation

27

• Prototype with three major pieces
• A Tofino switch for packet parsing/deparsing
• An FPGA for running in-network ML model
• A server for the Caravan software

Evaluation setup

• 2 applications and 3 datasets
• Intrusion detection (security)
• IoT traffic classification (performance)

• 2 evaluation metrics
• ML model accuracy: F1 score
• System cost of online learning: CPU/GPU and memory usage

28

Example: End-to end intrusion detection

• A dataset with 35 million packets
• 7 different types of attacks
• A 7-layer DNN that runs at line-rate in FPGA
• Classify each packet as malicious or benign

29

• Packet rate: 0.5 million packets/sec
• Run inference + compute accuracy on every packet
• Sample rate for the control plane: 0.1%

We start with the small in-network model

30

● ● ● ● ●

● ● ● ● ●

● ● ● ●
●

● ● ● ●
●

● ● ● ●
●

● ● ● ●

●
● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time since streaming (seconds)

Ac
cu

ra
cy

 (F
1)

● Small modelNew attack!

What if the large model guides the small model
(via online learning)?

31

● ● ● ● ●

● ● ● ● ●

● ● ● ●
●

● ● ● ●
●

● ● ● ●
●

● ● ● ●
● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time since streaming (seconds)

Ac
cu

ra
cy

 (F
1)

● Small model
Small model + Large model + Continuous retraining

Large model fails!

What if we introduce selective retraining via
accuracy proxy (Caravan)?

32

● ● ● ● ●

● ● ● ● ●

● ● ● ●
●

● ● ● ●
●

● ● ● ● ●
● ● ● ●

● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time since streaming (seconds)

Ac
cu

ra
cy

 (F
1)

● Small model
Small model + Large model + Continuous retraining
Small model + Large model + Smart retraining (Caravan)

Caravan keeps in-network ML models up-to-date with changing traffic dynamics

Caravan saves backend computation from
excessive retraining

33

0

200

400

600

800

(a) CPU

U
sa

ge
 (%

)

Caravan
Retraining with Generated Labels
Retraining with Ground Truth Labels

0

100

200

300

(b) Memory

U
sa

ge
 (M

By
te

s)
Caravan reduces backend CPU usage by an average of 56.23%

Scope and limitations

34

When to use Caravan

When not to use Caravan

ü ML inference on streaming data in real-time (e.g. edge, near-data)
ü Complex and dynamic data patterns (e.g. data drifts, concept drifts)
ü No ground truth labels available (e.g. no human intervention)

 ML inference on offline data (e.g. analytics of batch or historical data)
 Simple and static data patterns (e.g. small local area networks)
 Ground truth labels readily available (e.g. human-in-the-loop)

More details in our paper

• User interface of Caravan
• Effectiveness of weak supervision

labels
• GPT-4 labeling prompts
• Example of GPT-4 generations
• System cost and latency analysis
• Artifact (software + hardware)
…

paper code

35

Conclusion

• Large models, e.g. GPT-4, can guide small in-network ML models via
online learning since they can be good sources of labeling
• Sparse online learning via accuracy proxy saves system resources

from excessive retraining
• We present Caravan for practical online learning for in-network ML
• Caravan keeps in-network ML models up-to-date with changing traffic

dynamics
• Caravan reduces backend CPU usage by an average of 56.23% from excessive

retraining

• Questions? Email me: qizhengz@stanford.edu

paper code

36

