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Abstract—The growing interest in novel dataflow architectures
and streaming execution paradigms has created the need for a
simulator optimized for modeling dataflow systems.

To fill this need, we present three new techniques that make it
feasible to simulate complex systems consisting of thousands of
components. First, we introduce an interface based on Communi-
cating Sequential Processes which allows users to simultaneously
describe functional and timing characteristics. Second, we intro-
duce a scalable point-to-point synchronization scheme that avoids
global synchronization. Finally, we demonstrate a technique to
exploit slack in the simulated system, such as FIFOs, to increase
simulation parallelism.

We implement these techniques in the Dataflow Abstract
Machine (DAM), a parallel simulator framework for dataflow
systems. We demonstrate the benefits of using DAM by high-
lighting three case studies using the framework. First, we use
DAM directly as an exploration tool for streaming algorithms on
dataflow hardware. We simulate two different implementations
of the attention algorithm used in large language models, and
use DAM to show that the second implementation only requires
a constant amount of local memory. Second, we re-implement
a simulator for a sparse tensor algebra accelerator, resulting in
57% less code and a simulation speedup of up to four orders of
magnitude. Finally, we demonstrate a general technique for time-
multiplexing real hardware to simulate multiple virtual copies of
the hardware using DAM.

I. INTRODUCTION

Modern applications such as large language models (LLMs),
data analytics, and sparse machine learning have ignited a
flurry of research in both dataflow architectures, such as
Reconfigurable Dataflow Accelerators (RDAs) and Coarse-
Grained Reconfigurable Arrays (CGRAs) [9], [16], [26], [42],
[43], [45], [47], and streaming abstractions such as the Sparse
Abstract Machine [29]. To explore the functional behavior
and performance characteristics of their proposed dataflow
systems, many researchers develop bespoke simulators.

To simulate dataflow systems, a framework must (1) support
communication among thousands of coupled units, (2) model
fine-grained channel behaviors, and (3) simulate heterogenous
user-defined models. Furthermore, the scale of these systems
demands efficient parallelization. Providing these properties in
sequential simulation is straightforward; however, no efficient
method exists for parallel simulation.

For well-understood ISA-based systems, such as multi-
core CPUs, simulators such as ZSim, SlackSim, Graphite,
and gem5 provide trade-offs between accuracy and perfor-
mance [12], [38], [40], [50]. However, this is not the case
for general dataflow systems; programming models, hardware
architectures, memory configurations, and even the function-
ality of individual blocks are constantly in flux.

The state of the art framework for parallel heterogeneous
system simulation is the Structural Simulation Toolkit (SST)
[49]. However, its programming interface does not model fine-
grained channel behaviors, and its runtime scales poorly when
simulating tightly-coupled systems. At the heart of this scaling
challenge is the traditional event-driven event-queue execution
scheme, which results in a runtime whose synchronization
overhead increases with both increasing numbers of simulation
workers as well as decreasing communication latency. This
lack of scalability is particularly important as the number of
cores in a single machine has increased dramatically over
the years. In 2011, when the Structural Simulation Toolkit
was published, the largest server contained four Intel E5-
4650 CPUs with 32 cores / 64 hyperthreads total, while today
a server can contain up to eight Intel Xeon 8490H CPUs
totalling 480 cores / 960 hyperthreads.

To fill the need for high-performance, scalable, and flexible
dataflow simulation, we present three contributions:

1) A Communicating Sequential Processes (CSP)-based
programming interface for describing the functionality
of components (Section III)

2) Asynchronous distributed time and two efficient local-
only synchronization algorithms, enabling event-queue-
free execution (Section IV)

3) Time-bridging channels which decouple execution of
tightly coupled units while capturing fine-grained chan-
nel behaviors (Section V)

Using these ideas, we implement the Dataflow Abstract Ma-
chine (DAM) simulator framework with the aim of providing
a tool for exploring novel ideas in dataflow systems.1 DAM is
an exact, deterministic system, producing the same results on

1DAM is available on Github at https://github.com/stanford-ppl/DAM-RS.
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each execution. To demonstrate the broad applicability of this
framework, we include three case studies on projects built on
top of DAM.

First, we perform an algorithm-level exploration of stream-
ing algorithms for computing attention – the key operation
underpinning LLMs. Using an abstract dataflow hardware
model [51], we characterized the interplay between the algo-
rithms, their local memory usage, and end-to-end performance.

Second, we re-implement an existing functional simulator
for a sparse tensor algebra accelerator, using 57% less code
and achieving a geomean speedup of 594×. Additionally, we
were able to evaluate designs whose complexity and scale
were previously deemed infeasible (terminated after two days)
in minutes. Leveraging the increased performance of our
new simulator, we then calibrated the simulator against real
hardware by evaluating thousands of possible timing behaviors
using Opentuner [3].

Third, we demonstrate a general technique for time-
multiplexing real hardware to simulate multiple pieces of
hardware using DAM. This is particularly important for co-
simulating systems in which large quantities of physical com-
ponents are difficult to obtain. For example, an academic tape-
out generally only yields a small handful of chips. As a proof
of concept, we simulate execution of 1024 GPUs running
PyTorch models on four physical GPUs [46], and show that
the multiplexing system does not introduce significant error
when taking real measurements.

II. EXISTING SIMULATION ENVIRONMENTS

There are two primary aspects to a simulator framework:
its user-facing interface and its underlying runtime. General
purpose simulation frameworks such as the Structural Simula-
tion Toolkit [49] and YACSIM [31] expose an event-driven
interface, and use some form of ordered event queue [1].
The poor scalability of event queues is well known; many
specialized simulators such as ZSim [50], SlackSim [12], and
Graphite [40] circumvent this problem by using less precise
methods, leveraging domain knowledge to trade accuracy for
speed. However, due to the domain knowledge required, these
are unsuitable for a general purpose simulator framework.

With an event-driven interface, components register event
handlers with the framework. These handlers are then invoked
by the framework as events arise. While simpler from the
framework’s perspective, this makes modelling objects with
complex internal state difficult as handlers may be invoked at
any time by the framework.

III. USER-FACING INTERFACE

Our dataflow simulator implementation framework exposes
three constructs to users: contexts, time, and channels.

Work as early as the 1970s recognized that communicating
sequential processes (CSP) [28] is a natural interface for
programming dataflow systems [11]. We find that the converse
is also true — the description of dataflow systems naturally
maps to the CSP paradigm. Furthermore, this approach ex-
poses abundant parallelism, as processes execute in a largely
independent manner.

In order to support simulation, we augment the CSP model
with local time (CSPT). Each context owns a local monotonic
notion of simulated time — the context may step forward
in time whenever it would like, and as far as it would like,
but cannot step backwards. As illustrated in Listing 1, our
model is nearly identical to CSP with the addition of local
time annotations on lines 9, 18, and 19.

Contexts may view other contexts’ times to obtain a lower
bound on the viewed contexts’ simulated progress, or to wait
until a viewed context has reached a certain point in simulated
time. This feature facilitates the implementation of complex
logical units as a combination of several simpler contexts.

Finally, contexts communicate through channels, which
connect a sender context and a receiver context. Channels are
statically-connected, can optionally be bounded, and automat-
ically handle the simulation of events such as backpressure
and starvation. In the merge unit example, the operations on
lines 7, 8, 12, 15, and 18 implicitly update the context’s time
as necessary. Channels do not inherently possess a notion of
time and instead bridge between their sender and receiver time
zones; this is necessary to decouple the sender and receiver
contexts in order to enable parallel execution.

To highlight the qualitative differences between our pro-
posed CSPT scheme and event-driven (ED) schemes, we
present two pseudocode implementations of a merge unit in
Listing 1 and Listing 2. Both of these modeled units operate
with a two-cycle initiation interval and a six-cycle latency.
The comparison highlights key advantages of CSPT over
ED. First, ED is more verbose than CSPT due to needing
dedicated code to align events on the two incoming channels
(Listing 2 lines 18–20). Second, event handlers are not allowed
to reject events, and the ED unit must therefore store events
into a local queue and process them later (Listing 2 lines
3–15). Importantly, this means that the ED implementation
cannot simulate backpressure as all channels are effectively
unbounded.

IV. ASYNCHRONOUS DISTRIBUTED TIME

The CSPT interface presents the user with a local notion
of time when describing each component, which becomes
a distributed notion of time when combining contexts and
channels into a simulated system.

By using local time, the CSPT interface allows our runtime
to avoid any notion of global time. As a result, DAM is
entirely event-queue-free. Instead, our system relies on two
lazy pairwise synchronization mechanisms that are triggered
only as needed (Fig. 1). This allows contexts to execute far
into the future relative to each other, a property that we call
asynchronous distributed time. In our sparse tensor algebra
accelerator case study in Section VIII, we have observed
contexts that are thousands of cycles apart. This in turn
provides the decoupling necessary to achieve high efficiency
on modern multicore systems.
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1 struct MergeCSP {
2 fn run() {
3 let latency = 6;
4 let interval = 2;
5 loop {
6 // peek next blocks until a value is available.
7 let a = peek next(input chan 1);
8 let b = peek next(input chan 2);
9 let out time = time.tick()+latency;

10 // Tiebreak in favor of channel 1
11 if (a <= b) {
12 dequeue(input chan 1);
13 val = a;
14 } else {
15 dequeue(input chan 2);
16 val = b;
17 }
18 enqueue(output chan, val, out time);
19 time.incr(interval);
20 }
21 }
22 };

Listing 1: Pseudocode for a stream merging unit with an
initiation interval of two cycles and a latency of six cycles,
implemented with a CSPT interface.

1 struct MergeEvent {
2 // Internal data structures
3 backlog 1: Queue;
4 backlog 2: Queue;
5 next avail time: Time;
6 fn handle 1(evt) {
7 backlog 1.push(evt);
8 step();
9 }

10 fn handle 2(evt) {
11 backlog 2.push(evt);
12 step();
13 }
14 fn step() {
15 if (backlog 1.is empty() || backlog 2.is empty()) {
16 return;
17 }
18 let latency = 6;
19 let interval = 2;
20 let a = peek(backlog 1);
21 let b = peek(backlog 2);
22 let event time = max(a.time, b.time, next avail time);
23 next avail time = event time + interval;
24 // Tiebreak in favor of channel 1
25 if (a <= b) {
26 dequeue(backlog 1);
27 val = a;
28 } else {
29 dequeue(backlog 2);
30 val = b;
31 }
32 send event(output chan, val, event time + latency);
33 }
34 };

Listing 2: Pseudocode for an event-driven stream merging
unit. While it can simulate initiation interval and latency,
this implementation cannot simulate backpressure.

Context A Context B

Write

Read

Release

Acquire

Context A Context B

Release

Acquire

futex::park

Write

Read

Acquire Release

Parked

futex::unpark

Synchronization via Atomics Synchronization via Parking

Fig. 1: The two local-only synchronization mechanisms
used by DAM (Section IV-A, Section IV-B), illustrating two
ways in which context A may synchronize with a context
B. Real time flows downward, with lower events being
temporally ordered after higher events. Dotted horizontal
lines indicate synchronization points, where all prior writes
from context B are guaranteed to become visible to context
A.

In contrast, prior attempts at parallelizing execution, such
as distributed event queues, either implicitly or explicitly con-
strain the variance between clocks, synchronizing across dis-
tributed time. For example, the Structural Simulation Toolkit
utilizes global barriers with a frequency dictated by the
lowest latency inter-thread communication channel, effectively
bounding the parallel window. In a dataflow architecture, this
would result in a global barrier every few cycles.

Several concepts such as time and channels are used in
both the simulator and the system being simulated. To disam-
biguate, the term real concerns the simulator framework, while
simulated refers to the system being simulated. Real times are
represented as TR and simulated times are represented by TS .

A. Synchronization via Atomics (SVA)

It is frequently sufficient to optimistically synchronize
between contexts; for example, when reading from a real
channel, it is sufficient to know that the front contains a
value with time TS

A = 3, even if the receiver is at time
TS
B = 100. In general, when a simulated structure is a queue,

observing the current front object, or the lack thereof, certifies
that all previously enqueued objects have been dequeued.
Furthermore, if the time of the viewed context is in the future
relative to the time of the viewing context, then no further
synchronization is necessary.

SVA leverages memory ordering semantics to perform this
optimistic synchronization, using acquire/release ordering [25]
with transitivity [5], [6]. On systems with strong memory con-
sistency, such as x86, synchronization is handled automatically
by the hardware without requiring extra instructions. Simply
loading another context’s time is sufficient to synchronize with
it. On weaker models a memory barrier is required, such as a
dmb ish on ARM [54].

Consider two contexts A,B from the perspective of A.
Suppose that at time TR

A , A viewed B and loaded (acquire)
timestamp TS

B , which was stored (release) at time TR
B . Then,
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by transitivity, all writes in B prior to TR
B are visible to all

reads in A after TR
A . As a result, A has a complete history of

writes by B up until TS
B , synchronizing the viewing context

A with the viewed context B.

B. Synchronization via Parking (SVP)

SVA is sometimes insufficient, as the viewing context may
be in the future relative to the viewed context. In this case,
the viewing context must wait for the viewed context. Instead
of spin-waiting, SVP instead uses operating system-supported
futex operations [21]. Due to the higher cost of SVP, the DAM
runtime first attempts SVA before falling back to SVP.

Again, consider the same two contexts A,B, and suppose
that at real time TR

A and simulated time TS
A , A viewed B and

loaded TS
B < TS

A . While this provides the write history of B
up until TS

B , there may be events at TS
E ∈ (TS

B , TS
A ) which

could influence A. In order to handle this case, DAM uses
a futex park/unpark pair to suspend the thread executing A
at least until the thread executing B has reached the desired
time. As futex park/unpark pairs execute with release/acquire
ordering, SVP also synchronizes A with B.

V. CHANNELS

Channels represent simulated communication links between
units, and are directed connections between two contexts. Each
channel may be unbounded, or have a user-defined capacity.
Each datum is timestamped with its simulated time, which is
then used to simulate backpressure and starvation.

Channels are time-bridging data structures that are coherent
across real concurrent accesses at possibly different simulated
times, and are separated into a sender and a receiver, each of
which are owned by a different context.

An outline of the sender and receiver structures and their
connections is provided in Fig. 2. Each sender-receiver pair
communicates primarily through a pair of real channels –
a data channel containing timestamped data, and a response
channel that contains the timestamp of each read.

Each time the receiver dequeues a value, it responds with a
simulated future time indicating when the sender should ‘see’
the change in channel size; if the sender should observe the
read 10 cycles after when the read occurred, then the receiver
should enqueue a value of time + 10 to the response
channel.

In Listing 3, we provide pseudocode for enqueuing to a
channel. In order for the sender to determine if a channel is
full from the perspective of the sender, it first checks its local
perspective of the channel state. If this check reveals that the
channel may be full, the sending context synchronizes with the
receiving context using SVA, and then re-checks the response
channel and updates its local perspective accordingly. If the
channel is still perceived to be full, the sender then performs
SVP to verify whether the channel is truly full.

A. Local Time Acceleration

Blocking operations provide opportunities to accelerate
forward in time; if a context issues a blocking dequeue to

Sender Receiver

Underlying Sender Underlying Receiver

Response SenderResponse Receiver

Simulated
send-receive-delta Channel Data

Pointer to data Sender View

Receiver View

Real
send-receive-delta

Pointer to data

Real Channel (Data)

Real Channel (Time)

Fig. 2: An illustration of the real sender/receiver data
structures and their connections. Simulated channels are
backed by a pair of real channels – one which carries data
from the sender to the receiver, and another which notifies
the sender of the simulated time at which elements were
removed from the channel.

a channel, and the next value received on the channel is
timestamped for TS

data > TS
context, then the context can simply

advance until TS
data. Similarly, a sender can use the response

channel to predict the time of the next available opening in a
bounded channel and accelerate forward to the received time.

As a result of local time acceleration and asynchronous
distributed time, only the real enqueue and dequeue rates
of contexts dictate the real performance of the simulation.
This occurs due to two factors: first, by avoiding global
synchronization, barriers, and null messages, contexts may
execute arbitrarily far into the future until they are forced
to halt by backpressure or starvation. Second, by leveraging
local time acceleration, contexts are able to advance in time
as needed; a sender with a simulated initiation interval of 200
simply causes its receiver to jump forward in increments of
200 cycles on each dequeue.

VI. DISCUSSION

We would like to highlight two points of interest before
analyzing the case studies. First, we discuss the impact of
scheduling on real simulation performance. This is purely
a performance optimization, and simulation results are un-
changed. Second, we compare DAM against the current state-
of-the-art and highlight the qualitative and quantitative advan-
tages that DAM enjoys.

A. Scheduling

When executing a DAM simulation, users may choose
among different operating system scheduling schemes. By de-
fault, most operating systems use a fairness-oriented scheduler
which temporarily boosts the priority of newly woken threads.
This behavior is generally undesirable, as it increases the num-
ber of thread switches incurred by the runtime. For example,
consider a producer context P which feeds a consumer context
C, where the real enqueue rate of P is higher than the real
dequeue rate of C. In this case, after the channel fills, P must
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1 fn Sender::enqueue(data) {
2 loop {
3 if send receive delta < capacity {
4 underlying.enqueue(data);
5 return;
6 }
7 // Perform SVA
8 let recv time = recv view.tick lower bound();
9 if try recv from response() {

10 // Attempt to check the response channel for a
dequeue.

11 // If there was a response, advance to that time
since this is a blocking call

12 time.advance(received time);
13 send receive delta −= 1;
14 continue;
15 }
16 // Wait until the receiver has caught up (SVP)
17 // And get the time it is now at since it can overshoot.
18 let receiver time =
19 recv view.wait until(sender.tick lower bound());
20 // Elided: the try recv from response block
21 // Jump forward in time, and try again.
22 time.advance(receiver time + response latency);
23 }
24 }

Listing 3: Pseudocode for enqueuing to channel which
utilizes both SVA (Section IV-A) and SVP (Section IV-B).
For brevity, code which updates the datum’s timestamp to
account for channel behaviors is omitted.

wait for C to progress before P can resume. Under a boosting
fair scheduler, once C has progressed, P is immediately
woken and preempts C due to its elevated priority. It then
executes one step before becoming blocked again. As a result,
when applied to oversaturated and imbalanced workloads,
DAM should be used with a non-boosting FIFO policy, such
as SCHED_FIFO on Linux-based systems. These schemes
instead execute a context for as long as possible, and thereby
reduces the number of thread switches, as well as allowing
the slowest contexts to execute for the entire duration. We ran
the multiheaded attention application from Section VIII with
a parallelization factor of 32 with both SCHED_FIFO and the
default Completely Fair Scheduler (CFS) [41], saturating a 88
core / 176 vCPU cloud instance, and recorded performance
counters using perf (TABLE I). FIFO scheduling performs
better than CFS in every metric, resulting in a 2.3× speedup
in this comparison.

There are also situations where FIFO underperforms; in
undersaturated environments, CFS generally performs on-par
or better due to lower scheduling overhead. However, these
simulations do not typically execute for sufficient amounts of
real time to warrant further optimization.

B. SST vs. DAM

The Structural Simulation Toolkit is the state-of-the-art sim-
ulation framework for creating architectural simulations, and is
written in C++. In order to compare DAM’s synchronization
scheme and runtime against SST’s event-queue event-driven
model, we use a parameterized microbenchmark consisting of

Metric

Schedule Context
Switches

Page
Faults

CPU
Migrations

Total
Time (s)

CFS 1146392270 1314807 11908306 89

FIFO 37777673 229320 3060225 38

Improvement 30.3× 5.7× 3.9× 2.3×

TABLE I: Performance comparisons between
SCHED_FIFO and the default scheduler (CFS) on a
88 core / 176 vCPU cloud instance when running the
Sparse MHA benchmark with a parallelization factor of
32. In oversaturated systems such as highly-parallelized
MHA and the larger benchmarks in Section VI-B, FIFO
scheduling is generally faster than CFS.

{2, 8, 32} binary reduction trees of depth {8, 10}, and running
100000 reductions per tree. To vary the amount of work
performed per-node, we compute the {16, 20}th Fibonacci
number using the naive exponential method and add it to
the result of each node. The same C++ implementation of
naive Fibonacci is used for both systems, with DAM calling
the function via foreign function interface. To compare how
the two systems handle workload imbalance, we increase the
computational workload for only the first reduction tree by
either 0 (unchanged) or 4 (16× increase). This benchmark was
executed on a 88 core / 176 hyperthread cloud server using
Intel Xeon Platinum 8481C CPUs, and simulation results were
equivalent modulo implementation differences.

As shown in Fig. 3, DAM outperforms SST in every
configuration, with the largest advantage on problems with
few, highly connected graphs. Additionally, notice that DAM’s
advantage is more pronounced with imbalanced workloads.
This is due to asynchronous distributed time allowing the
operating system scheduler to automatically load balance,
while SST’s event-driven event-queue model is unable to
do so. The minimum speedup using the CFS scheduler was
1.93×, while SCHED_FIFO achieved at least 3.3×.

VII. CASE STUDY: STREAMING ATTENTION

For our first case study, we use DAM to explore differ-
ent streaming implementations of the attention algorithm on
dataflow hardware. This case study implements the abstract
hardware model and implementations described in parallel
work using DAM [51]. The attention algorithm is a mechanism
that captures the correlation between tokens within a sequence
by exchanging information along the sequence and model
dimension. It is used in transformers [55], the foundation for
almost all large language models [14], [44], [53]. Given input
tensors Q,K, V ∈ RN×d where N is the sequence length
and d is the head dimension, the attention algorithm computes
output tensor O ∈ RN×d :

sij =
∑
k

qikkkj , pij =
esij∑
j e

sij
, oij =

∑
k

pikvkj (1)
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Fig. 4: Computation graph for standard attention (a) and
the sequence-length-agnostic attention (b). Bold characters
in the left graph are row vectors of each matrix where the
subscript indicates the row index.

Attention with long sequence lengths enables models to
consider long-range dependencies, and has been empirically
shown to produce significantly better models. However, the
algorithm has time and memory complexity quadratic in
sequence length due to the N×N intermediate matrices S and
P . Streaming execution is well-suited for such workload as it
eliminates the need to store and read back the intermediate data
by fusing operations [17], [19], [43]. In this study, DAM serves
as a tool for algorithmic exploration on dataflow hardware.

A. Implementing Streaming Attention in DAM

To design a streaming implementation for a given ap-
plication, the first step is to convert the application into a
computation graph as shown in Fig. 4 (a). DAM provides
a context-and-channel interface that maps naturally to these
computation graphs by expressing each node as a context and

connecting them with channels. In a manner similar to the
example in Listing 1, each block is described functionally, and
then timing information is injected by incrementing local time
at various points. This enables iterating over different designs
quickly by allowing the user to focus on the functionality and
timing characteristics without necessarily specifying a low-
level implementation. In dataflow hardware, the contexts can
be mapped to compute units, and the channels can be mapped
to either distributed memory or to network buffers depending
on depth. Because there is a reduction operation between the
first and third context, the depth of channel C in Fig. 4(a)
must be at least N + α for the streaming implementation to
execute at peak throughput. α is a constant value determined
by the producer context’s initiation interval and the consumer
context’s latency, which are constant values agnostic to the
sequence length (N ). In our implementation, the value of α
was 22. The depth of other channels can be all set to a constant
value based on the latency and initiation interval of adjacent
contexts, which makes the given streaming implementation
only require O(N) local memory.

B. Sequence-length-agnostic Streaming Attention

Although the naive implementation can perform attention
with O(N) local memory, it is possible to eliminate the
dependence on sequence length entirely using an alternate
algorithm. To do so, the optimized attention implementation in
[51] adapts memory-efficient attention algorithms [18], [48]
for streaming execution as shown in the computation graph
in Fig. 4(b)2. To implement this algorithm for a streaming
execution model, an additional context that performs a running
sum is required. To confirm that the sequence-length-agnostic
implementation only requires a constant amount of local
memory without any performance loss, we compare when
the maximum channel depth is 22 with the case where the

2It uses softmax with scaling [18], [33], [39], [48] instead of the naive
softmax as it is widely used in practice for numerical stability.
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Fig. 5: The comparison between the real time to simulate
the streaming implementation for Fig. 4(a) in Spatial and
DAM. We omitted unfinished simulations for Spatial after
running for three days.
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Fig. 6: The breakdown of the speedup in real time
when simulating the streaming implementation of standard
attention in Fig. 4(a).

channels have an infinite depth (this will show the peak
throughput scenario). The required channel depth to reach
peak throughput remains O(1) because, in this streaming
implementation, the channel depth only relies on the consumer
context’s latency and the producer context’s initiation interval,
which is a constant number agnostic to the sequence length.
As shown in Table II, we confirm that in the sequence-length-
agnostic implementation, all the units run at peak throughput
only using O(1) intermediate memory.

C. DAM vs. Spatial

We implement the same streaming algorithm described in
VII-A using Spatial [36], a domain-specific language for high-
level descriptions of hardware accelerators, and use the built-
in hand-optimized simulator written in Scala. We compare the
simulation time across different sequence lengths from 512
to 32K on an Intel Xeon Processor E7-8890 v3 at 2.5GHz.
As shown in Fig. 5, DAM shows more than two orders of
magnitude speedup and enables simulating very long sequence
lengths such as 16K and 32K within a few minutes, which
would have taken days in Spatial. The simulated cycles in
the two simulators matched across different sequence lengths
with a constant 8-cycle gap due to a minor difference in
startup/shutdown behavior.

Spatial’s simulator is written in Scala, while DAM is written
in Rust. To measure how much of the speedup comes from
the language difference, we emulate the single-threaded cycle-
by-cycle simulation of Spatial by restricting DAM to run

Seq. Length 512 2048 8192 32768

Max Chan. Depth 22 | ∞ 22 | ∞ 22 | ∞ 22 | ∞
Simulated cycles 524K 8M 134M 2B

TABLE II: Simulated cycle count of the streaming imple-
mentation for sequence-length-agnostic attention (Fig. 4
(b)) in DAM using different channel depths.

on a single core and changing the simulated context after
each cycle. As shown in Fig. 6, the restricted DAM shows
a geomean speedup of 38.25× faster than Spatial across
different sequence lengths. Although our implementation for
standard attention only has four contexts, and the contexts
communicate with each other frequently due to the short
channels, we gain an additional geomean speedup of 8.65×
from parallel execution and lower thread-switching overhead
due to asynchronous distributed time. The speedup from
the parallelism in the framework itself will increase as the
implementation is parallelized and uses more contexts.

VIII. CASE STUDY: MODELING A SPARSE TENSOR
ALGEBRA HARDWARE ACCELERATOR

For our second case study, we use DAM to implement
a hardware simulator for a sparse tensor algebra accelera-
tor. Sparse tensor algebra is prevalent in various application
domains [2], [4], [22], [24], [37]. Prior work, the Sparse
Abstract Machine (SAM) [29], enabled the compilation of
these applications on streaming dataflow hardware by pre-
senting a streaming abstract machine model for representing
sparse tensor algebra using a streaming tensor abstraction.
The SAM compiler is an adapted version of the TACO
compiler [35], lowering from Concrete Index Notation [34]
into a graph of “primitive” blocks connected by streams. This
generated dataflow graph can then be mapped onto a dataflow
accelerator. SAM represents each tensor as one or more
streams with data interleaved with control tokens, resulting in
data-dependent behavior. Additionally, SAM also introduces a
hardware accelerator design based on a Coarse Grain Recon-
figurable Architecture (CGRA), aimed at accelerating sparse
applications.

To validate the correctness of the compiler and to aid in the
performance characterization of their CGRA hardware, SAM
has a hand-written Python simulator to model various applica-
tions on the CGRA. However, the extant SAM simulator can-
not handle large problem sizes; even simple applications such
as matrix-matrix addition could take hours. Furthermore, since
SAM is a single-threaded simulator, simulated parallelism
in the program graph would increase the overall execution
time despite taking fewer simulated cycles as this results in
more nodes being simulated sequentially. In order to explore
larger and more complex applications, we re-implemented the
SAM simulator using the DAM framework. This allows us to
both simulate the CGRA hardware as well as propose new
capabilities by introducing new nodes. The faster simulation
times of the new implementation in DAM enabled the use of
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Application
MM
Add

SpM
SpM

SDD
MM

MHA (w/ different par factors)

1 2 4 8 16 32 64

Contexts 11 15 31 60 92 156 284 540 1052 2076

TABLE III: Number of spawned contexts/threads for
each simulated application in SAM including MHA with
different parallel factors.

design space exploration techniques to automatically calibrate
the simulator to the hardware using an RTL simulation of the
components.

A. SAM Implementation in DAM

We mapped the primitives in SAM as contexts in DAM
and we mapped streams to channels. We found that the CSPT
interface used by DAM is substantially more concise and
ergonomic than the cycle-by-cycle abstraction used in the
SAM simulator. In Fig. 7, we show the implementation of
a Repeat block in both the original SAM simulator and our
re-implementation using DAM. Due to the original simulator’s
cycle-based abstraction, state must be stored in between each
iteration – accounting for a majority of the code. Furthermore,
the cycle-based abstraction compromises the structure of the
code, as different concerns are interleaved throughout. In
contrast, the CSPT interface eliminates the majority of the state
manipulation code and instead resembles a purely functional
description of each unit. As a result, the DAM implementation
has 57% fewer lines of code than the implementation of the
original SAM simulator.

1) Implementation of Sparse Attention in SAM: Using the
SAM implementation in DAM, we were able to design a
sparse variant of the multi-headed attention (MHA) algorithm
in Transformer models. This was done using existing blocks
in SAM now implemented in DAM along with new blocks
for supporting memory movement primitives and non-linear
operations. Additionally, while work on dense attention found
that streaming implementations are vulnerable to deadlock
due to undersized data channels when computing the softmax
operation (Section VII), we additionally discovered that the
metadata streams were similarly prone to causing deadlock and
capacity-driven bottlenecks. Furthermore, we observed that
random sparsity can cause stochastic deadlock; for example,
while a random vector of length 64 with 10% nonzeroes
expects to have < 7 nonzeroes, there is a 0.5% chance that it
has more than 16 nonzeroes. If the channel was provisioned
with depth 16, this would deadlock the system after only a
few thousand iterations. This in turn motivates the need for
runtime sparsity guarantees, such as a unit which drops excess
nonzeroes. We leave exploration of such methods as future
work.

2) Original SAM vs. SAM on DAM: To assess our SAM
implementation on DAM, we conducted an evaluation run-
ning three distinct sparse tensor algebra kernels on synthetic
benchmarks randomly generated each with uniformly random
sparsity: matrix elementwise add (MMAdd) at 50% nonze-

ros, sparse matrix-sparse matrix multiplication (SpMSpM) at
10% nonzeros, and sampled dense-dense matrix multiplication
(SDDMM) at 30% nonzeros. In addition, we benchmarked
our implementation of the sparse MHA in the original SAM
simulator and in the implementation of SAM on DAM. For
our MHA benchmarks, we fixed the batch size to 8 and the
number of heads to 8 and swept across sequence lengths from
64 to 512. All experiments were done on C3 Google cloud
instances with Intel Xeon Platinum 8481C CPU at 2.7GHz.
Detailed context usage for each of the applications are shown
in Table III offering insights into the effectiveness of DAM in
terms of context utilization. As shown in Fig. 8, we are able
to achieve speed ups ranging from 31.2x to up to 4 orders
of magnitude improvement in simulation times, and in some
cases are able to simulate larger applications/datasets that the
original SAM simulator could not complete within a few days.
The speedup DAM achieves over SAM increases with problem
size for all applications other than SDDMM.

3) Exploring parallelism in SAM Through DAM: In order
to scale designs to handle real-world problems, dataflow
systems should exploit more than just pipeline parallelism.
To do so, we augmented the SAM model with coarse-grained
parallelism. As part of our investigation into parallelizing the
MHA algorithm, we performed a sweep of parallelization
factors from 1 to 64 as shown in Fig. 9. We find that DAM
scales with the amount of simulated parallelism until real
hardware resources are exhausted, as shown in Fig. 9. We
observe a decrease in scaling beyond a parallelization factor
of 32, due to core saturation and contention, as core utilization
consistently exceeds 95% and the number of contexts/threads
in our application surpasses two thousand, as indicated in
Table III.

4) Automated Performance Calibration: In the field of
hardware-software co-design, ensuring accuracy and consis-
tency between hardware simulators and RTL simulations is
crucial for design validation. Often times, calibrating a simu-
lator is a tedious process for hardware designers as it requires
manual tuning. Discrepancies between high-level simulators
and RTL simulation can be due to a variety of factors such
as modeling differences, parameter mismatches, and imple-
mentation errors. When comparing the output of our original
simulator to the output of the RTL simulation, we found dis-
crepancies in the reported timings of the memory units across
all applications on the order of hundreds of cycles. Leveraging
the increased speed of the new simulator, we attempted to use
autotuning methods to automatically calibrate the simulator’s
timing behavior to match that of the RTL simulation. This task
is phrased as an optimization problem over timing parameters,
with the objective of minimizing error with respect to a set
of RTL simulation traces. The CSPT abstraction enables this
process by providing local time; for example, in order to model
pipeline bubbles after control tokens, we modified the context
to call time.incr_cycles(x) when matching a control
token, and expose x as a parameter to the autotuner.

This optimization strategy proved to be remarkably effective
as shown in Fig. 10, calibrating the simulator to within
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Fig. 7: Comparison of a repeat/broadcast primitive in SAM against its DAM implementation. The code samples are
shown and shaded for emphasis, and qualitative comparison, rather than intended for direct legibility.

MMAdd

1000 2000 3000 4000 5000

Matrix Dimension

102

105

R
ea

l
T

im
e

(s
)

SpMSpM

100 200 300 400 500

Matrix Dimension

SDDMM

100 200 300 400 500

Matrix Dimension

MHA

64 128 256 512

Sequence Length

SAM on DAM

Original SAM

102

105

S
p

ee
d

u
p

Speedup

Fig. 8: Comparison of Simulation Times for MMAdd, SpMSpM, and SDDMM where dimensions indicate matrix sizes
with row = column. We omitted unfinished simulations for original SAM after running for 2 days.
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Fig. 9: MHA sweep across parallelization factors from 1
to 64. The machine’s cores were saturated at par 32 with
95%+ utilization.

an average of 0.8 cycles (∼ 0.3%) of the RTL simulation
numbers across the test streams, a significant improvement.
To achieve this level of accuracy, we executed a total of
3000 optimization iterations using Opentuner [3], with the
search process converging around ∼ 2700 iterations. The
rapid simulation times enabled by our new simulator were
instrumental in enabling this extensive optimization process, as
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Fig. 10: Applying Opentuner for automated calibration to
minimize the error in # of cycles against RTL simulation

performing such a large number of iterations would have been
impractical with the previous simulator. The entire calibration
process was completed within minutes, demonstrating the
practical feasibility of our approach. We also attempted to use
the Bayesian Compiler Optimization (BaCO) [27], but found
that its sample efficiency was overshadowed by its significantly
slower speed.
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B. Python vs. Rust

The SAM simulator is written in Python 3, while DAM is
written in Rust. We estimate how much of the performance
improvement using DAM comes from the language difference
by performing an ablation study on a sparse matrix-matrix
multiplication (SpMSpM) benchmark. We establish a baseline
by running the experiments restricting DAM to 1 core, using
a channel depth of 1, while forcing each thread to yield
after every cycle (yielding resulted in a 2× slowdown on
average compared to not yielding), and with the default CFS
scheduler to emulate the behavior of single-threaded cycle-by-
cycle Python execution.

Under these restrictions, DAM ran on average 24.8× faster
than the original SAM implementation across different prob-
lem sizes. This accounts for the performance benefit from the
language difference between Rust and Python. We achieved
a substantial performance improvement from parallelism with
DAM beyond the language difference as demonstrated by an
additional geomean speedup of 87× as shown in Fig. 11.
In addition, we analyzed the impact of channel depth on
performance and observed that beyond a channel depth of 8,
the performance improvement is generally minimal, with the
exception of unbounded channels. Execution with unbounded
channels is significantly faster than bounded channels, as they
remove the need for simulating backpressure altogether.

IX. CASE STUDY: TIME-MULTIPLEXED SIMULATION

An additional capability enabled by CSPT and asyn-
chronous distributed time is the ability to time-multiplex
real resources for co-simulation. This capability is critical
to simulating large scale systems without access to the full
system itself. For example, an academic tape-out may result
in a dozen chips, of which only a few are physically set up in
the laboratory.

Pseudocode for multiplexing a system is shown in List-
ing 4. The scheme effectively consists of a regular loop
which attempts to lock and use a resource, combined with a
performance estimation step. While the real lock is held, other
contexts which attempt to use the same resource will block.
The operating system can then schedule a different, unblocked
context to be simulated in parallel. Once the lock is released,
the operating system may then schedule the previously blocked
context. Perhaps surprisingly, this system prefers an unfair
lock – if the context re-acquires the lock immediately, then
the on-system task will still be the same and therefore the task
stash/load can be avoided. Task stashing is done on a real task
basis, which dramatically reduces the amount of real memory
and data movement needed if multiple virtual GPUs execute
the same task. Asynchronous distributed time allows more
iterations of each task to execute back-to-back, and further
reduces the amount of real data movement necessary.

A. Latency-sensitive Inference Simulation

We constructed a simulation modelling latency-sensitive
inference, which is common in real-world real-time systems.

In this setting, inference is triggered when either: (1) A pre-
determined batch size is filled up, or (2) a pre-determined
amount of time has passed since the first input arrived.
The simulated system seeks to maximize efficiency while
simultaneously limiting the maximum inference latency of any
input.

This scenario is particularly difficult to model in event-
driven systems, as the batching behavior depends on simulated
time. Given an input, it is generally impossible to immediately
establish when the result should be produced, as it depends on
the timing of possible future inputs.

Using CSPT, this system can be modelled by two con-
nected contexts: a batching context and an inference context,
connected by real channels that exchange simulated timing
information and batch data. Asynchronous distributed time
allows the batching context to execute arbitrarily far into the
future relative to the inference context, and therefore the batch-
ing context can gather precise information about the size and
timing of each batch without advancing the inference context.
The inference context lags in the past, and proceeds using the
timing information gathered by the batching context. Since
downstream consumers only see the inference context, they are
unaware of this time manipulation and receive data with the
expected timestamps. Similarly upstream producers only see
the batching context and thus receive accurate backpressure
information.

B. Real Isolation Characterization

Finally, to characterize the error in real behavior when
multiplexing GPUs, we collected the average and standard
deviations in real-time-per-batch of a synthetic PyTorch model
on various multiplexed virtual GPU / physical GPU configu-
rations using the previously described setting (Fig. 12). In this
experiment, the maximum batch size was 1024, and each batch
was full when launched. Real time-per-batch was recorded
for each batch, which upper-bounds the error that would be
observed if using finer-grained metrics such as CUDA timers.

Average time-per-batch increased slightly with larger num-
bers of virtual GPUs, but remained within 10% of the original
baseline results. Counterintuitively, the standard deviation in
time-per-batch decreased as the number of virtual GPUs
increased, likely due to more consistent loading on the physical
GPUs. These results were gathered using a cloud machine with
4 NVIDIA T4 GPUs, with clock rate locked to 1590MHz.

X. RELATED WORK

a) Simulation schemes: Simulation methods generally
fall under two primary families of simulators: optimistic and
conservative [23]. Optimistic simulators, as popularized by
Time Warp [30], attempt to predict the future, rolling back
or undoing mistakes as necessary. DAM does not currently
use optimistic approaches, though it is potential future work.
Optimism places additional complexity on simulation writers
for specifying how to speculate and roll back. Moreover, low-
latency/high-frequency communication would cause rollbacks
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1 global lock: Mutex<Resource>;
2

3 struct WrapperContext {
4 // Some workload which needs to be multiplexed for co−simulation
5 let task = ...;
6 fn run() {
7 loop {
8 // Elided: Fetch new inputs from channels
9 // Elided: Exit loop if no new tasks

10 global lock.lock();
11 if global lock.task != task {
12 // Put away the current job
13 global lock.task.stash();
14 // Load our own task into the resource
15 task.load();
16 }
17 task.run();
18 global lock.unlock();
19 // use feedback from the task execution to modify local time
20 time.incr cycles(task.estimate cycles());
21 // Elided: Enqueue outputs to channels
22 }
23 }
24 }

Listing 4: Pseudocode multiplexing a physical resource
using the DAM abstraction. While simple, we show in
Fig. 12 that the system can achieve relatively stable
behavior.

to propagate across significant portions of the system. Never-
theless, we are hopeful that optimism could be adopted on an
opt-in basis, resulting in a hybrid simulation framework.

Bound-weave simulators such as ZSim [50] leverage the
comparatively low communication intensity of multicore pro-
grams to execute thousands of cycles independently, and then
re-executing collected traces to correct timings and observed
data. This is generally unsuited for the low-latency and fre-
quent communication in dataflow systems, which would lead
to mispredictions and invalidation.

Conservative simulation algorithms instead only execute
when guaranteed to be correct. These algorithms are generally
variants of the original family of algorithms proposed by
Chandy, Misra, and Bryant (CMB) [7], [10], [11]. DAM
is a conservative algorithm, but does not adopt the event-

driven/event-queue paradigm used by CMB-style algorithms.
b) Structural Simulation Toolkit (SST): SST is an open

parallel simulation framework for architectural and microar-
chitectural exploration developed by the HPC community [49].
DAM differs from SST in many aspects: (1) DAM does not use
any event queues, (2) DAM exposes a CSPT interface rather
than an event driven interface, (3) DAM is able to simulate
channel behaviors such as backpressure and deadlock, and (4)
DAM does not require global fences or barriers.

c) Architectural Simulators: CPU simulators such as
ZSim [50], parallel extensions of gem5 [15], [38], [57], Sniper,
and Graphite are designed with a target class of systems in
mind. By leveraging domain knowledge, these simulators are
able to make performance-accuracy trade-offs. As a general-
purpose framework, DAM does not possess the domain knowl-
edge necessary to make such trade-offs, but this does not
preclude users of DAM from doing so.

d) Ptolemy: Ptolemy is a project which seeks to model
complex programs across multiple models of computation [8].
Ptolemy II is able to model dynamic dataflow programs, as
well as other models of computation [56]. However, this work
uses a global scheduler and synchronization, and does not
model fine-grained channel behaviors.

e) FPGA-based simulation (RAMP [52], FAST [13],
FireSim [32]): We see FPGA-based simulators as complemen-
tary to DAM. Components can be described and iterated using
DAM, leveraging the fast debug and development pace of
software. Once researchers are satisfied with projected results
and functionality, time can be invested in RTL.

A. Adapting SST with DAM

Despite significant differences between the Structural Sim-
ulation Toolkit and DAM, it is worth exploring which of our
proposals could be used to augment SST as to reuse years of
engineering effort. Unfortunately, as DAM’s efficiency stems
from the codesign of its interface and runtime, these additions
are unlikely to produce the full performance benefits in SST.
While various interface improvements can be readily ported,
the runtime changes are largely dependent on the interface
changes.

11



1/1 2/1 2/2 4/1 4/2 4/4 8/4 64/4 1024/4
vGPUs/ GPUs

0

100000

200000

300000

R
ea

l 
T

im
e 

p
er

 B
at

ch
 (

u
s)

Real Time vs. Number of Physical/Virtual GPUs

Fig. 12: The average and standard deviations for the real time taken per batch, across a variety of virtual GPU /
physical GPU configurations. The average time-per-batch is used as an upper-bound on the error and variance that
would be observed using this multiplexing scheme. The average real time-per-batch is stable across configurations, only
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a) Bounded Channels: Support for bounded channels
can be added to SST by replicating the structure illustrated
in Fig. 2 using SST::Links instead of real channels. This
would result in increased event-queue contention as it dou-
bles the number of events, but would be fully backwards-
compatible with existing code.

b) CSP w/ Time: With the addition of coroutines in
C++20 [20], individual components can be expressed using
the CSP w/ Time interface and integrate with the existing
event-driven ecosystem. In this scheme, upon encountering a
simulated operation which would block, the coroutine would
yield control back to the worker. Combined with an appropri-
ate “shim” to handle buffering, the improved ergonomics of
CSP w/ Time could be integrated into SST as well.

c) Pairwise Synchronization and Balancing: SST could
adapt DAM’s SvA/SvP scheme to eliminate global synchro-
nization barriers between workers. In this case, each worker
thread would only need to query or await threads which write
to connecting links, and straggling workers would only incur
the comparatively low cost of SvA. With substantial additional
engineering effort, a component-stealing approach could be
adopted as well, improving SST’s ability to handle imbalanced
workloads.

XI. CONCLUSION

In this work, we tackle the challenge of efficient parallel
simulation of dataflow systems. We first described a productive
and straightforward interface for describing simulated dataflow
systems based on communicating sequential processes aug-
mented with time. We then presented two new mechanisms
for performing local synchronization between two dataflow
units. Using these mechanisms, we constructed time-bridging
channels which expose additional parallelism by decoupling
tightly connected units.

These techniques are implemented in the Dataflow Abstract
Machine, an event-queue-free framework designed for efficient
parallel dataflow system simulation. Using DAM, we are
able to (1) perform algorithm-level exploration on abstract
dataflow hardware, (2) extend the Sparse Abstract Machine

to handle sparse machine learning, explore various tradeoffs
in the system, and calibrate the simulator to accurately match
the behavior of actual hardware, and (3) time-multiplex limited
hardware resources for co-simulation of large-scale systems.

We hope that DAM will provide an efficient platform for
conducting future research on dataflow systems and invite the
exploration of previously intractable problems.
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APPENDIX

A. Abstract

This appendix describes the setup and instructions to re-
produce the experimental results shown in each of the case
studies. The provided virtual machine contains preconfigured
setups for the DAM vs. SST comparison as well as all case
studies. The artifact consists of a single x86-64 virtual machine
image running Ubuntu 23.10.
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B. Artifact check-list (meta-information)
• Data set: Synthetically generated sparse tensors are available

in the ˜/sam-benchmarks directory of the virtual machine.
• Run-time environment: Any host capable of supporting an

x86-64 VMDK image with Ubuntu 23.10.
• Hardware: CPU-based experiments used a Google Cloud C3-

highcpu-176 (88 core Intel Xeon Platinum 8481C CPU @ 2.70
GHz), with the minimum configuration of 352 GiB of memory.
GPU-based experiments used a Google Cloud n1-standard-16
instance with 4xNVIDIA T4 GPUs.

• Metrics: Wall-clock execution times.
• Output: Terminal Outputs, pickle files.
• How much disk space required (approximately)?: 128GiB

will suffice for all experiments.
• How much time is needed to prepare workflow (approx-

imately)?: VM images for both CPU-based and GPU-based
experiments are available. Setting up the images on a cloud
provider should take less than 30 minutes.

• How much time is needed to complete experiments (approx-
imately)?:

– SST vs. DAM (Fig. 3): 4 hours
– Spatial vs. DAM (Fig. 5): 16.5 hours
– DAM vs. Restricted DAM (Fig. 6): 24 minutes
– Sequence Agnostic Attention (Table II): 4 hours
– SAM vs. DAM (Fig. 8): 72 hours (We recommend running

each original SAM Python simulator tests on separate
machines, in parallel)

– MHA sweep across parallelization factors (Fig. 9): 1 hour
– Automated calibration (Fig. 10): 2 minutes
– SAM vs Different Configurations of DAM for SpMSpM

Benchmark (Fig. 11): 5 hours
– GPU Experiments (Fig. 12): 6 hours

• Publicly available?: Yes, virtual machine image on Zenodo.
• Archived (provide DOI)?: 10.5281/zenodo.10895641

C. Description

1) How to access: The virtual machine image is available
at 10.5281/zenodo.10895641.

2) Hardware dependencies:
• CPU scaling benchmarks require a large server, such

as Google Cloud C3-highcpu-176 or Amazon EC2
c7i.metal-48xl.

• Smaller CPU benchmarks such as SAM and Spatial
comparisons should be executed on machines with at least
8 physical cores and 64 GiB of memory.

• GPU-based simulation requires four CUDA 12.4 compat-
ible GPUs, and a host machine with at least 8 cores.

3) Software dependencies: All required dependencies are
packaged into the virtual machine images provided. Using a
cloud service to host the virtual machines is recommended.

4) Data sets: We provide synthetically generated
matrices/higher-order tensors in the artifact evaluation
each with uniformly random sparsity: MMAdd at 50%
nonzeros, SpMSpM at 10% nonzeros, SDDMM at 30%, and
MHA at 40% nonzeros.

D. Installation

The provided virtual machine images can be used either
locally or via cloud service. All experimental setups are under
the dam user.

E. Evaluation and expected results

1) DAM vs. SST: The data for Fig. 3 can be reproduced
using the sst-dam-benchmarks artifact. The resulting data will
be placed into two pickle files: sst_results.pkl and
dam_results.pkl. By default, the driver runs the sweep
once due to the long runtime. Additional iterations can be
performed by appending -r <repeats> to the driver script,
consuming four additional hours per repeat.
$ python sst-dam-benchmarks/driver.py

2) Case Study: Streaming Attention:
a) Real time comparison (Fig. 5): This will run a sweep

over different sequence lengths and print out the real time to
run the simulation and the simulated cycles to the terminal.
The run_all.sh and DAM_sweep.sh files have separate
commands for each sequence length with a comment specify-
ing the estimated runtime.
$ cd ˜/spatial # For Spatial
$ ./run_all.sh
$ cd ˜/dam-experiments/stream-attn-dam
$ ./DAM_sweep.sh # For DAM

The exact numbers for the real time to simulate Spatial
and DAM can be slightly different from Fig. 5 because the
hardware used for artifact evaluation differs from the hardware
used when generating the figure. However, the ratio between
the real time to simulate Spatial and DAM will still be
consistent with Fig. 5 where DAM shows more than two orders
of magnitude speedup over Spatial.

b) Simulated cycles comparison (Section VII-C): The
simulated cycles reported from Section E2a can be used to ver-
ify that the simulated cycles in the two simulators match across
different sequence lengths as mentioned in Section VII-C.
Note that the constant 8-cycle gap is due to a minor difference
in startup/shutdown behavior.

c) Sequence-length-agnostic attention (Table II): The
following command will report the simulated cycles for the
sequence-length-agnostic implementation when using channels
with a bounded depth (maximum depth of 22) and channels
with infinite depth. The seq_agnostic_attn.sh file has
separate commands for each sequence length with a comment
specifying the estimated runtime.
$ cd ˜/dam-experiments/stream-attn-dam/
$ ./seq_agnostic_attn.sh

Checking whether the simulated cycles match for both cases
will confirm that the sequence-length-agnostic implementation
only requires a constant amount of local memory without any
performance loss.

d) Breakdown of the speedup (Fig. 6): To measure the
speedup from the parallelism in the framework itself, we
restrict DAM to emulate the single-threaded cycle-by-cycle
simulation of Spatial. We will call this the restricted-DAM
simulation. The following command will sweep across differ-
ent sequence lengths shown in Fig. 6 for DAM and restricted-
DAM and print out the speedup breakdown in the terminal.
The speedup_breakdown.sh file has separate commands
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for each sequence length with a comment specifying the
estimated runtime.

$ cd ˜/dam-experiments/stream-attn-r-dam
$ ./speedup_breakdown.sh

The speedup_breakdown.sh script will compare the real
time to simulate DAM and restricted-DAM to measure the
speedup from the parallelism in the framework itself, which
corresponds to the dark blue portion shown in Fig. 6. To
measure the speedup factor from the language difference,
we compare the real time to simulate restricted DAM with
Spatial. This corresponds to the light blue portion in Fig. 6.
Since the Spatial experiments to generate Fig. 6 will take 4
hours, we will use the real time reported from Section E2a.
When running the Spatial simulation in Section E2a, it
will have created a file called Spatial_sweep.sh un-
der ˜/dam-experiments/stream-attn-r-dam. The
speedup_breakdown.sh script will parse this file and
report the speedup instead of running Spatial again.

The breakdown for speedup can have a constant factor
difference compared to Fig. 5 because the hardware used for
artifact evaluation differs from the hardware used when gen-
erating the figure. However, the speedup from the parallelism
in the framework itself remains on average 11.2× which is
larger than the number reported in Fig. 5 (8.65×).

3) Case Study: Modeling a Sparse Tensor Algebra Hard-
ware Accelerator:

a) SAM vs. DAM (Fig. 8): To run the simulations shown
in Fig. 8 comparing Sam on DAM simulator with the original
SAM Python simulator, we provide a conda environment in
the virtual machine image. The AHA environment is only
used in this subsection for running the Python simulator,
and is brittle; we do not recommend installing or updating
packages. Replace <Test_Name> in the following command
to one of MMAdd, SpMSpM, SDDMM, MHA to simulate
each application showcased in the figure separately (note that
unfinished simulations shown in the figure for MMAdd 5000,
SpMSpM 500 and MHA 512 were aborted after running for
2 days).

$ conda activate aha
$ cd ˜/sam-artifact/sam
$ pytest -s --durations=0 sam/sim/test/ \
sam-dam-benchmarks/test_<Test_Name>.py

To run the DAM simulations of the same applications, run

$ cd ˜/dam-experiments/comal
$ ./compare_sam.sh

This script with sweep through each application and all the
different dimensions for each and the simulated cycles and real
time will be printed in the terminal. Since we use time to
record the elapsed time, the time taken to run each experiment
is the time shown next to real in the printed out text in the
terminal. The simulated cycles is after Elapsed Cycles:.
The speedup is found by dividing the real time values across
all the applications in original SAM with the corresponding
real time values in DAM.

b) MHA sweep across parallelization factors (Fig. 9):
To reproduce the results for the parallel multi-head attention
runs, we provide a script for sweeping across parallel factors
as presented in the chart using the following steps:

$ cd ˜/dam-experiments/comal
$ ./run_parallel_mha.sh

c) Automated calibration (Fig. 10): To reproduce the
results for applying opentuner for automated calibration, use
the following command to run opentuner:

$ cd ˜/dam-experiments/comal
$ ./run_calibration.sh

This should run opentuner for many iterations with SAM
on DAM to calibrate the simulator to the RTL simulation
numbers of the hardware being simulated. This script should
also regenerate the automated calibration evaluations vs. error
plots (Fig. 10) for the run. Although the optimization run
should converge to that cycle number, the plot may look
slightly different from Fig. 10.

d) SAM vs. different configurations of DAM for SpMSpM
benchmark (Fig. 11): For this ablation study, we sweep
through various different configuration of DAM and compare
with the original SAM simulator numbers for the SpMSpM
benchmark. We also use this ablation study to establish how
much of the performance improvement using DAM comes
from the language difference. To do so, we establish a
baseline running DAM with no parallelism as mentioned
in subsection VIII-B. This mimics the behavior of single-
threaded cycle-by-cycle Python execution of the original SAM
simulator. Using restricted DAM, the single-threaded CFS con-
figuration for each dataset was found to be on average 24.8x
faster than the original SAM Python simulator. This is found
by dividing the SpMSpM original SAM simulator numbers
from part a in the instructions for this case study by the
single-threaded CFS configuration runs in this ablation study.
This study also shows that the performance improvement
from parallelism with DAM beyond the language difference
is roughly 87x. Note that the performance numbers may vary
depending on the machine the experiments are run on.

4) Case Study: Time-Multiplexed Simulation: This case
study uses the GPU setup described above. The following steps
are for initial setup, and only need to be performed once.

# Start MongoDB in the background
$ tmux new -d "mongod --dbpath <path>"
# Lock GPU Clocks to 1590 MHz
$ sudo nvidia-smi --lock-gpu-clocks=1590
$ sudo nvidia-smi -pm 1

For each virtual/physical combination, executing the follow-
ing script will print both the average time (in microseconds)
taken per batch as well as its standard deviation. Fig. 12 was
manually generated using these outputs.

$ bash dam-torch/run_experiment.sh \
<vGPUs> <pGPUs>

14



REFERENCES

[1] A. Akram and L. Sawalha, “A survey of computer architecture simu-
lation techniques and tools,” IEEE Access, vol. 7, pp. 78 120–78 145,
2019.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” Journal
of machine learning research, vol. 15, pp. 2773–2832, 2014.

[3] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation, 2014, pp. 303–
316.

[4] B. W. Bader, M. W. Berry, and M. Browne, “Discussion tracking in
enron email using parafac,” in Survey of Text Mining II: Clustering,
Classification, and Retrieval. Springer, 2008, pp. 147–163.

[5] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Mathematizing
c++ concurrency,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 55–66. [Online]. Available: https://doi.org/10.1145/
1926385.1926394

[6] H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency
memory model,” SIGPLAN Not., vol. 43, no. 6, p. 68–78, jun 2008.
[Online]. Available: https://doi.org/10.1145/1379022.1375591

[7] R. E. Bryant, “Simulation on a distributed system,” in Proc. of the 16th
Design Automation Conference, 1979, pp. 544–552.

[8] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,” in
Readings in hardware/software co-design, 2001, pp. 527–543.

[9] A. Carsello, K. Feng, T. Kong, K. Koul, Q. Liu, J. Melchert, G. Nyen-
gele, M. Strange, K. Zhang, A. Nayak, J. Setter, J. Thomas, K. Sreedhar,
P.-H. Chen, N. Bhagdikar, Z. Myers, B. D’Agostino, P. Joshi, S. Richard-
son, R. Bahr, C. Torng, M. Horowitz, and P. Raina, “Amber: A 367 gops,
538 gops/w 16nm soc with a coarse-grained reconfigurable array for
flexible acceleration of dense linear algebra,” in 2022 IEEE Symposium
on VLSI Technology and Circuits (VLSI Technology and Circuits), 2022,
pp. 70–71.

[10] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via
a sequence of parallel computations,” Commun. ACM, vol. 24, no. 4, p.
198–206, apr 1981. [Online]. Available: https://doi.org/10.1145/358598.
358613

[11] K. Chandy and J. Misra, “Distributed simulation: A case study in design
and verification of distributed programs,” IEEE Transactions on Software
Engineering, vol. SE-5, no. 5, pp. 440–452, 1979.

[12] J. Chen, M. Annavaram, and M. Dubois, “Slacksim: A platform for
parallel simulations of cmps on cmps,” SIGARCH Comput. Archit.
News, vol. 37, no. 2, p. 20–29, jul 2009. [Online]. Available:
https://doi.org/10.1145/1577129.1577134

[13] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), 2007, pp. 249–261.

[14] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-
mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fe-
dus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai,
M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei,
K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm:
Scaling language modeling with pathways,” 2022.

[15] J. Cubero-Cascante, N. Zurstraßen, J. Nöller, R. Leupers, and J. Joseph,
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